
Thirty Years of Digital Currency:
From DigiCash to the Blockchain

Matthew Green  
Johns Hopkins University

My background
• Prof. at Johns Hopkins University

• Mainly work in applied cryptography 
(TLS, messaging systems, privacy-preserving
protocols)

• I write a blog

• Co-founded a cryptocurrency (Zcash) 
and boy was that weird

Why talk about  
cryptocurrency?

• Whether you love it or hate it…

• Cryptocurrencies are exerting 
a massive influence on our field

• The first major exposure to cryptography

• That’s both a good thing and a bad thing

• The good: we get to deploy some  
really exciting new cryptography

• The bad: if you stare into the abyss…

This talk
• A bit of history (payments & cryptocurrency)

• Some of the exciting practical directions 
being investigated today

• Some of the most exciting research directions 
(both in currency and outside of currency)

• With an admitted focus on privacy problems

• Postscript: Some random bad crypto in cryptocurrency

1980s-2007
(or: how we got PayPal)

1980s: Retail Payments
• Goal: Digital payment system that

• Allows payments between customers and merchants (c2m)

• Or between individual customers (c2c)

• Strong cryptographic security

• Privacy

Problems
• Double spending

• To capture double spending you need an online  
(networked) party that must be trusted

• They can attack the system or simply fail

• Privacy

• In many naive systems, the bank 
sees every transaction you make

• Origin

• How is new currency created?

e-Cash
• Devised by Chaum, Chaum/Fiat/Naor, Brands, etc.

• Move to a “cash” model, with added privacy

• Individuals would carry redeemable tokens

• Reduces the problem to detecting double spending 
and user privacy

Chaum (CRYPTO ’83)

sk

pkPayer Bank

Merchant

�

Redeem/ 
verify not previously  

spent

(Blind) signature

CHL (Eurocrypt ’05)

sk

pkPayer Bank

Merchant

�

Redeem/ 
verify not previously  

spent

(Blind) signature

K

SN = PRF (K, i)

For I = 1 to N

⇧NIZK

e-Cash
• Huge number of academic works / practical  

improvements

• Online schemes / offline schemes

• (Offline required using tamper-resistant storage)

• Main research problem continued to be privacy

Why did centralized e-Cash fail?
• Deploying e-Cash systems required a centralized bank

• Required a trusted server with money issuing powers

• In 1994, EU regulations made this more challenging

• 9/11 and beyond saw closures of non-anonymous
currencies (e-Gold and Liberty  
Reserve)

Why did e-Cash fail? (2)
• Were these technical or policy failures? Maybe both.

• The e-Cash model was centralized and relied on a
vulnerable interface with the banking system

• Privacy was (eventually) off the table for regulators

• Any solution would 
have to work around 
those (manufactured) 
technical problems

1996: SET
• Developed by Visa and MasterCard

• Cryptographic architecture based on certificates

• Assurance, authenticity and confidentiality

Why SET failed
• Required end-user certificates

• All the problems of key management PLUS  
all of the problems of identity verification

• Binding keys to user identities seems to trouble users

Conclusions (1980s-2007)
• Most cryptographic solutions too complex, or had

“undesirable” features (privacy)

• Commercial solutions (existing credit cards, SET) failed to
support the case of person->person transfers

• Web browsers didn’t support fancy crypto 
anyway.

• We got PayPal

Conclusions (1980s-2007)
• Most cryptographic solutions too complex, or had

“undesirable” features (privacy)

• Commercial solutions (existing credit cards, SET) failed to
support the case of person->person transfers

• Web browsers didn’t support fancy crypto 
anyway.

• We got PayPal

Conclusions (1980s-2007)
• Most cryptographic solutions were too complex, or had

undesirable features (privacy)

• Commercial solutions (existing credit cards, SET) failed to
support the case of person->person transfers

• Web browsers didn’t support fancy crypto 
anyway.

• We got PayPal

Conclusions (1980s-2007)
• Most cryptographic solutions were too complex, or had

undesirable features (privacy)

• Commercial solutions (existing credit cards, SET) failed to
support the case of person->person transfers

• Web browsers didn’t support fancy crypto 
anyway.

• We got PayPal

The decentralized era 
2008-2018

Nakamoto, 2008
• Replace the server with a distributed ledger (blockchain)

• Use a new consensus technique to construct the ledger

Nakamoto, 2008
• Replace the server with a distributed ledger (blockchain)

• Use a new consensus technique to construct the ledger

• Use puzzles to handle consensus & generate funds  
[Credit to Dai, (B-Cash) Back (HashCash) etc.]

Nakamoto, 2008
• Replace the server with a distributed ledger (blockchain)

• Use a new consensus technique to construct the ledger

• Use puzzles to handle consensus & generate funds

• Eliminate the need for explicit key/identity bindings

Nakamoto, 2008
• Replace the server with a distributed ledger (blockchain)

• Use a new consensus technique to construct the ledger

• Use puzzles to handle consensus & generate funds

• Eliminate the need for explicit key/identity bindings

• Everything else is straightforward crypto and 
excellent engineering

Credit for Bitcoin
• With much credit due:

• Wei Dai, B-cash laid out many ideas

• Adam Back, HashCash

• Ledgers used in e-Cash (Sander and Ta-Shma)

• Years of existing consensus  
systems (mostly ignored)

Lessons of Bitcoin

• Getting the consensus algorithm right makes all the difference

Lessons of Bitcoin

• Getting the consensus algorithm right makes all the difference
[B]lockchain-style consensus indeed achieves certain
robustness properties in the presence of sporadic
participation and node churn that none of the classical
style protocols can attain.

- Pass, Shi 2018 (also ‘16, ’17, Daian, Pass, Shi ’16)

Lessons of Bitcoin

• Using the right consensus algorithm really makes a difference

• Eliminating the need for key/identity
management  
significantly simplifies the currency problem

Lessons of Bitcoin

• Using the right consensus algorithm really makes a difference

• Eliminating the need for key/identity management 
significantly simplifies the currency problem

• Human beings are weird

Lessons of Bitcoin

• Using the right consensus algorithm really makes a difference

• Eliminating the need for key/identity management 
significantly simplifies the currency problem

• Human beings are weird

This is simultaneously trivial and the most
unexpected lesson of the entire cryptocurrency

experiment:

People will assign significant value to
meaningless electronic tokens — if you
convince them that the tokens are secure and

have a predictable supply.

Limitations of Bitcoin

• Privacy limitations

• Functionality limitations

• Scalability & Sustainability limitations

Bitcoin & Privacy

Source: MPJLMVS13

🐵🚀

Zerocoin/Zcash

From payments to state
• Of course once you have a ledger…

• Each Bitcoin transaction can be considered a function f()
consuming some previous state and producing a state
update

• Obviously this generalizes nicely to more complex programs
and stored data

The future: 2018-

What interests me
• Scaling (channels)

• Replacing PoW

• Conditioning (trustworthy) computation on ledgers

Scaling
• Current Bitcoin/Ethereum transaction rate is ~7TX/s

• Compare with Visa at 10,000-40,000+ TX.s globally

• This gets worse as transaction complexity increases

• Problems are storage/throughput/validation bandwidth

L2 (Channels)

Open

Update

Update

1 0

0.9 0.1

0.8 0.2

… Close result on blockchain …

L2 (Channels)

L2 (Channels)

Bitcoin / Lightning Network
Privacy

• No real privacy between peers on a single payment channel

• Only way to achieve privacy is to use longer paths

• Requires a complex “Onion Routing” style protocol

A ! I1 ! I2 ! I3 ! B

Channel problems: privacy
• However, this arrangement doesn’t really work well. Aside

from cost, it falls to even limited collusion

• Reason: transactions in each channel must share a structure
called a “hash lock” that is common between all peers

A ! I1 ! I2 ! I3 ! B
HH HH

Channel problems: privacy
• In principle this can be fixed using Chaumian e-cash ideas

• Treat one endpoint of the channel as a Chaumian bank, 
withdraw coins and spend them back.

• Use channel to ensure fair exchange

• E.g., TumbleBit (Heilman et al, 2016), Bolt (Miers, Green, 2016)

�

Channel problems: privacy
• This works fairly well for channels of length 1

• Can be made to work for channels of length 2

“bank”

Channel problems: privacy
• This works fairly well for channels of length 1

• Can be made to work for channels of length 2

• But this model fails to scale to longer paths (2+ hops)

• Fundamentally this is because the disparate channels (with
different participants) have to be tied together in some
recognizable way

• Open Problem: build networks with many-hop paths,
without losing (value, payer ID) privacy

Replacing PoW

Proof of Stake
• Current PoW design is obviously unsustainable

• Most common solution (in permissionless) chains is  
Proof of Stake”

• Rough summary: enumerate all stakeholders of the coin, scaled
by their stake — and then sample one to construct the next
block

Proof of Stake
• Some excellent work on this happening (here at Eurocrypt!)

• E.g., [DGKR18], [KRDO17]

• Some is currently deployed (Cardano), Ethereum Casper on
Testnet

• All current systems require randomness to sample  
[KRDO17] proposed an interactive VSS scheme! 
[DGKR18] uses a grinding-resistant hash function  
 (based on CDH)

• This seems to require experimental validation

Ledger-conditioned computation
• Most of the solutions discussed so far use cryptography

to secure ledgers (blockchains)

• Why not use ledgers to secure cryptography?

Ledger-conditioned computation  
(Setting 1)

• Assume a trustworthy computing device with  
internal secrets — but no ability to keep state

• These devices can be constructed inexpensively from
hardware, or “virtually” from 
cryptographic obfuscation  
and/or MPC

• Assume we want 
multi-step interactive 
computation

Ledger-conditioned computation  
(Setting 2)

• Alternatively, imagine a network of identical trustworthy 
computing devices, each provisioned with secrets

• We want to run a single multi-step interactive computation
where the node performing the computation can be
replaced 
between steps

• “Private smart contracts” 
“AWS Lambda”

State without ledgers

Secure computing 
device

Input1
Out1 ,

S1 Encrypt(K, state1)

S1

State without ledgers

Secure computing 
device

Input1
Out1 ,
Input 2,
Out2,

S1

S2

S2 Encrypt(K, state2)

state2 Decrypt(K,S1)

S1

Reset attacks

Secure computing 
device

Input 3, S1

Reset attacks

Secure computing 
device

Input 3,
Out3 ,

S1

S3

Reset attacks

Secure computing 
device

Input 3,
Out3 ,

S1

S3

Input 4,

And so on…

S1

Securing state with ledgers

Secure computing 
device

Publicly-verifiable ledger

Imagine we have a “publicly verifiable”
blockchain:

1. We can post a string S
2. Obtain a copy of the full Ledger, plus

a proof that the ledger is valid

(This covers most private blockchains,
many public blockchains if we make an

economic assumption)

Securing state with ledgers

Secure computing 
device

Publicly-verifiable ledger

1. Input

2. L, Proof

Securing state with ledgers

Secure computing 
device

Publicly-verifiable ledger

3. Input, L, Proof

Out1 , S1

The ugly

Routine entropy failures

Thanks @ben_h

Routine entropy failures

Thanks @ben_h

Routine entropy failures

Thanks @ben_h

Zerocoin

Zerocoin (not Zcash)

