Simple Proofs of Sequential Work

Bram Cohen

Krzysztof Pietrzak

Eurocrypt 2018, Tel Aviv, May 1st 2018

- What Proofs of Sequential Work
- How Sketch of Construction & Proof
- Why Sustainable Blockchains

- What Proofs of Sequential Work
- How Sketch of Construction & Proof
- Why Sustainable Blockchains

 $\mathsf{verify}(\chi, N, \phi, \gamma, \tau) \in \{\mathsf{accept}, \mathsf{reject}\}$

- What Proofs of Sequential Work
- How Sketch of Construction & Proof
- Why Sustainable Blockchains

- What Proofs of Sequential Work
- How Sketch of Construction & Proof
- Why Sustainable Blockchains

Time-lock puzzles and timed-release Crypto

Ronald L. Rivest^{*}, Adi Shamir^{**}, and David A. Wagner^{***}

Revised March 10, 1996

Time-lock puzzles and timed-release Crypto

Ronald L. Rivest^{*}, Adi Shamir^{**}, and David A. Wagner^{***}

Revised March 10, 1996

 $\begin{array}{l} \mbox{puzzle: } (N=p\cdot q,x,T) \ , \ \mbox{solution: } x^{2^T} \mod N \\ \mbox{solution computed with two exponentiation given } p,q: \\ e\leftarrow 2^T \mod \phi(N) \ , \ \ x^{2^T}=x^e \mod N \end{array}$

conjectured to require T sequential squarings given only N $x \to x^2 \to x^{2^2} \to \dots x^{2^T} \bmod N$

Time-lock puzzles and timed-release Crypto

Ronald L. Rivest^{*}, Adi Shamir^{**}, and David A. Wagner^{***}

Revised March 10, 1996 puzzle: $(N = p \cdot q, x, T)$, solution: $x^{2^T} \mod N$ solution computed with two exponentiation given p, q: $e \leftarrow 2^T \mod \phi(N)$, $x^{2^T} = x^e \mod N$

conjectured to require T sequential squarings given only N $x \to x^2 \to x^{2^2} \to \dots x^{2^T} \mod N$

sequential computation \sim computation time \Rightarrow "send message to the future"

Publicly Verifiable Proofs of Sequential Work Mohammad Mahmoody* Tal Moran[†] Salil Vadhan[‡] February 18, 2013

PoSW vs. Time-Lock Puzzles

Publicly Verifiable Proofs of Sequential Work

February 18, 2013

Time-lock puzzles and timed-release Crypto

Mohammad Mahmoody* Tal

Tal Moran[†] Salil Vadhan[‡]

Revised March 10, 1996

Ronald L. Rivest^{*}, Adi Shamir^{**}, and David A. Wagner^{***}

Functionality

● Prove that time has passed ● Send message to the future
 ⇒ Non-interactive time-stamps

PoSW vs. Time-Lock Puzzles

Publicly Verifiable Proofs of Sequential WorkTime-lock puzzles and timed-release CryptoMohammad Mahmoody*Tal Moran[†]Salil Vadhan[‡]Ronald L. Rivest*, Adi Shamir**, and David A. Wagner***

Revised March 10, 1996

Functionality

February 18, 2013

 ● Prove that time has passed ● Send message to the future ⇒ Non-interactive time-stamps

Assumption

Random oracle model or
 Non-standard algebraic
 "sequential" hash-function
 assumption

PoSW vs. Time-Lock Puzzles	
Publicly Verifiable Proofs of Sequential Work	Time-lock puzzles and timed-release Crypto
Mohammad Mahmoody [*] Tal Moran [†] Salil Vadhan [‡]	Ronald L. Rivest [*] , Adi Shamir ^{**} , and David A. Wagner ^{***}
February 18, 2013	Revised March 10, 1996
Functionality	
• Prove that time has passed	 Send message to the future
\Rightarrow Non-interactive time-stamps	
Assumption	
 Random oracle model or 	 Non-standard algebraic
"sequential" hash-function	assumption
Public vs	. Private
• Public-coin \Rightarrow	• Private-coin \Rightarrow
Publicly verfiable	Designated verifier

Proofs of Sequential Work

aka. Verifiable Delay Algorithm

Proofs of Sequential Work

aka. Verifiable Delay Algorithm

Completeness and Soundness in the random oracle model:

Completeness and Soundness *in the random oracle model:* **Completeness:** $\tau(c,T)$ can be computed making T queries to \mathcal{H} **Soundness:** Computing any τ' s.t. verify (χ, T, τ') =accept for

random χ requires almost T sequential queries to ${\mathcal H}$

Completeness and Soundness in the random oracle model:

Completeness: $\tau(c,T)$ can be computed making T queries to \mathcal{H}

Soundness: Computing any τ' s.t. verify (χ, T, τ') =accept for random χ requires almost T sequential queries to \mathcal{H}

massive parallelism useless to generate valid proof faster \Rightarrow prover must make almost T sequential queries $\sim T$ time

Three Problems of the [MMV'13] PoSW

- 1) Space Complexity : Prover needs massive (linear in T) space to compute proof.
- 2) Poor/Unclear Parameters due to usage of sophisticated combinatorial objects.
- **3)** Uniqueness : Once an accepting proof is computed, many other valid proofs can be generated (not a problem for time-stamping, but for blockchains).

Three Problems of the [MMV'13] PoSW

- 1) Space Complexity : Prover needs massive (linear in T) space to compute proof.
- 2) Poor/Unclear Parameters due to usage of sophisticated combinatorial objects.
- **3) Uniqueness :** Once an accepting proof is computed, many other valid proofs can be generated (not a problem for time-stamping, but for blockchains).

New Construction

- 1) Prover needs only O(log(T)) (not O(T)) space, e.g. for $T = 2^{42}$ (\approx a day) that's $\approx 10KB$ vs. $\approx 1PB$.
- 2) Simple construction and proof with good concrete parameters.
- **3)** Awesome open problem!

Construction and Proof Sketch

The MMV'13 ConstructionProver \mathcal{P} \mathcal{H} Verifier \mathcal{V} $\chi \notin \mathfrak{S}$ statement χ Time T = 6 $\chi \notin \mathfrak{S}$

• Protocol specifies depth-robust Construction

 ℓ_2

- Protocol specifies depth-robust DAG G on T nodes ℓ_1 —
- Define "fresh" random oracle $\mathcal{H}_{\chi}(\cdot) \equiv \mathcal{H}(\chi \| \cdot)$
- Compute labels of G using \mathcal{H}_{χ}
- Send commitment ϕ to labels to ${\mathcal V}$

The MMV'13 Construction

Prover \mathcal{P}

Verifier \mathcal{V}

 ℓ_2

check openings and if labels consistent with parent labels

 ℓ_{5}

open $\{\ell_i\}_{i \in c \cup i \in parents(i)}$ • Protocol specifies depth-robust DAG G on T nodes ℓ_1

statement χ

Time T = 6

 $c \subset V$

- Define "fresh" random oracle $\mathcal{H}_{\gamma}(\cdot) \equiv \mathcal{H}(\chi \| \cdot)$
- Compute labels of G using \mathcal{H}_{χ}
- Send commitment \u03c6 to labels to \u03c6
 \u03c6 challenged to open random subset of nodes and parents (interaction can be removed using Fiat-Shamir)

The MMV'13 Construction

Verifier \mathcal{V}

statement χ

Time T = 6

- G is (e, d) depth-robust
- ϕ commits $\tilde{\mathcal{P}}$ to labels $\{\ell'_i\}_{i\in V}$
- i is bad if $\ell'_i \neq \mathcal{H}(\ell'_{parents(i)})$

• Case 1: $\geq e$ bad nodes \Rightarrow will fail opening phase whp.

The MMV'13 Construction

Verifier \mathcal{V}

Prover \mathcal{P}

statement χ Time T = 6

- G is (e, d) depth-robust
- ϕ commits $\tilde{\mathcal{P}}$ to labels $\{\ell'_i\}_{i\in V}$
- $i \text{ is bad if } \ell'_i \neq \mathcal{H}(\ell'_{parents(i)})$
- Case 1: $\geq e$ bad nodes \Rightarrow will fail opening phase whp.
- Case 2: Less than e bad labels $\Rightarrow \exists$ path of good nodes (by (e, d) depth-robustness) $\Rightarrow \tilde{P}$ made d sequential queries (by sequantality of RO)

The New Construction T = 15For every leaf i add all edges (j, i) where j is left sibling of node on path $i \rightarrow root$

T = 15

For every leaf i add all edges (j,i) where j is left sibling of node on path $i \to root$

For every leaf i add all edges (j,i) where j is left sibling of node on path $i \to root$

- \mathcal{P} computes labelling $\ell_i = \mathcal{H}(\ell_{parents(i)})$ and sends root label $\phi = \ell_T$ to \mathcal{V} . Can be done storing only $\log(T)$ labels.
- \mathcal{V} challenges \mathcal{P} to open a subset of leaves and checks consistency (blue and green edges!)

For every leaf i add all edges (j,i) where j is left sibling of node on path $i \to root$

- \mathcal{P} computes labelling $\ell_i = \mathcal{H}(\ell_{parents(i)})$ and sends root label $\phi = \ell_T$ to \mathcal{V} . Can be done storing only $\log(T)$ labels.
- \mathcal{V} challenges \mathcal{P} to open a subset of leaves and checks consistency (blue and green edges!)

Optimally Efficient Accountable Time-Stamping

PKC'00

Ahto Buldas^{*1}, Helger Lipmaa^{*1}, and Berry Schoenmakers^{**2}

T = 15

T = 15

- \tilde{P} committed to labels ℓ'_i after sending $\phi = \ell_{15}$.
- $i \text{ is bad if } \ell'_i \neq \mathcal{H}(\ell'_{parents(i)}).$

T = 15

- \tilde{P} committed to labels ℓ'_i after sending $\phi = \ell_{15}$.
- $i \text{ is bad if } \ell'_i \neq \mathcal{H}(\ell'_{parents(i)}).$
- Let $S \subset V$ denote the bad nodes and all nodes below.

T = 15

- \tilde{P} committed to labels ℓ'_i after sending $\phi = \ell_{15}$.
- $i \text{ is bad if } \ell'_i \neq \mathcal{H}(\ell'_{parents(i)}).$
- Let $S \subset V$ denote the bad nodes and all nodes below.
- Claim 1: \exists path going through V S (of length T |S|).

T = 15

- \tilde{P} committed to labels ℓ'_i after sending $\phi = \ell_{15}$.
- $i \text{ is bad if } \ell'_i \neq \mathcal{H}(\ell'_{parents(i)}).$
- Let $S \subset V$ denote the bad nodes and all nodes below.
- Claim 1: \exists path going through V S (of length T |S|).
- Claim 2: P can't open |S|/T fraction of leafs.

T = 15

Proof Sketch

- \tilde{P} committed to labels ℓ'_i after sending $\phi = \ell_{15}$.
- $i \text{ is bad if } \ell'_i \neq \mathcal{H}(\ell'_{parents(i)}).$
- Let $S \subset V$ denote the bad nodes and all nodes below.
- Claim 1: \exists path going through V S (of length T |S|).
- Claim 2: P can't open |S|/T fraction of leafs.

Theorem: \tilde{P} made only $T(1-\epsilon)$ sequential queries \Rightarrow will pass opening phase with prob. $\leq (1-\epsilon)^{\#\text{of challenges}}$

why we care Sustainable Blockchains

Mining Bitcoin (Proofs of Work)

Mining Bitcoin (Proofs of Work)

Can we have a more "sustainable" Blockchain?

Source: Hilbert, M., & López, P. (2011). The World's Technological Capacity to Store, Communicate, and Compute Information. *Science*, 332(6025), 60 –65. http://www.martinhilbert.net/WorldInfoCapacity.html

computation as resource prob. of solving PoW first \sim fraction of hashing power dynamics

proof of work hardness set so blocks appear \approx every 10 minutes

computation as resource prob. of solving PoW first \sim fraction of hashing power dynamics proof of work hardness set so blocks appear \approx every 10 minutes

chic Proofs of Space and Time

 $\begin{array}{l} \mbox{computation as resource} \\ \mbox{prob. of solving PoW first} \sim \mbox{fraction of hashing power} \\ \mbox{dynamics} \\ \mbox{proof of work hardness set so blocks appear} \approx \mbox{every 10 minutes} \end{array}$

chic Proofs of Space and Time

space as resource prob. of finding PoSpace of best quality \sim fraction of dedicated space

 $\begin{array}{l} \mbox{computation as resource} \\ \mbox{prob. of solving PoW first} \sim \mbox{fraction of hashing power} \\ \mbox{dynamics} \\ \mbox{proof of work hardness set so blocks appear} \approx \mbox{every 10 minutes} \end{array}$

chic Proofs of Space and Time

space as resource prob. of finding PoSpace of best quality \sim fraction of dedicated space dynamics Run PoSW on top of PoSpace for $T \sim$ quality of PoSpace to "finalize" block

 σ_i : proof of space on challenge $hash(\tau_{i-1})$

 τ_i : proof of sequential work on challenge $hash(\sigma_{i-1})$ and time parameter $quality(\sigma_{i-1})$

 σ_i : proof of space on challenge $hash(\tau_{i-1})$

 τ_i : proof of sequential work on challenge $hash(\sigma_{i-1})$ and time parameter $quality(\sigma_{i-1})$

NOTHING TO GRIND HERE!

 σ_i : proof of space on challenge $hash(\tau_{i-1})$

 τ_i : proof of sequential work on challenge $hash(\sigma_{i-1})$ and time parameter $quality(\sigma_{i-1})$

