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The problem Bitcoin solves

» Allows a collection of parties to agree on a dynamic, common
sequence of transactions—a ledger.

» persistence: past transactions in ledger are immutable
» liveness: new transactions are eventually included
» parties may arise and disappear

» some parties may seek to disrupt the system



Bitcoin as a leader election process,
proof of work

#

#

|I e parties compete for the right to extend
e winning certificate: PoW solution
o Pr[success] proportional to computing power




Bitcoin: Laudatory remarks

» Simple
» neatly solves a challenge: consensus with a fluid
population of participants

» Sidesteps previous impossibility results
» thanks to a new assumption (honest majority of
comp. power)

» Amenable to formal analysis
» [GKL15,PS517,BMTZ17]



Bitcoin: Criticism

relies on an ongoing computational race
power consumption estimates:
on the order of GWs

almost tripled over the last 6 months

Attack cost proportional to the energy spent in the
attack period.



Challenge: Replace “proof-of-work™
with alternate resource lottery

» other physical resources, with different properties
» disk space

» useful computation/storage

» virtual resource: coin itself
— Proof of Stake



Proof of Stake:
stake-based lottery

» blockchain tracks ownership of coins among parties
» Idea: participants elected proportionally to stake
= no need for physical resources

» hard to implement securely



Previous proof-of-stake solutions
with rigorous guarantees

Eventual (Nakamoto-style) Consensus:
o Ouroboros [KRDO16]
o« Snow White [DPS16]

Blockwise Byzantine Agreement:
» Algorand [CM16]



Ouroboros

Provably guarantees

» persistence: stable transactions are immutabl

» liveness: new transactions included eventuall



Ouroboros

Provably guarantees
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persistence: stable transactions are immutab’

liveness: new transactions included eventual
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adversary has minority stake throughout

adversary subject to corruption delay

communication is synchronous



Ouroboros Praos

Provably guarantees

» persistence: stable transactions are immutable

» liveness: new transactions included eventually
if

» adversary has minority stake throughout
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Ouroboros Praos in a Nutshell

First eventual-consensus oS secure
» 1n a semi-synchronous communication model
» despite fully adaptive corruptions
via
o local, private leader selection
» forward-secure signatures

» blockchain hashing for randomness (scalability!)



Ouroboros Praos:
Protocol Description




Communication Model

» assume synchronized clocks
» time divided into slots

» honest messages may be adversarially delayed by at
most A slots

e A is unknown to the protocol

» adversary may send arbitrary messages to arbitrary
subsets, arriving at arbitrary times



Ouroboros Praos: Protocol overview

» time divided into consecutive, disjoint slots




Ouroboros Praos: Protocol overview

» time divided into consecutive, disjoint slots
» atmost 1 block per slot allowed
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Ouroboros Praos: Protocol overview

» time divided into consecutive, disjoint slots

» epoch: sequence of R slots
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Ouroboros Praos: Protocol overview

» time divided into consecutive, disjoint slots
» epoch: sequence of R slots

» slot leader: a player allowed to create block in that slot
» selected proportionally to his/her stake
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Ouroboros Praos: Protocol overview

» time divided into consecutive, disjoint slots
» epoch: sequence of R slots

» slot leader: a player allowed to create block in that slot
» selected proportionally to his/her stake
» independent for each slot and each player
» =>empty slots, multi-leader slots
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Ouroboros Praos: Protocol overview

» time divided into consecutive, disjoint slots
» epoch: sequence of R slots

» slot leader: a player allowed to create block in that slot
» selected proportionally to his/her stake
» independent for each slot and each player
» =>empty slots, multi-leader slots
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Ouroboros Praos: Protocol overview

» time divided into consecutive, disjoint slots
» epoch: sequence of R slots
» slot leader: a player allowed to create block in that slot

» stake distribution: snapshot from last block 2 epochs ago

TQ"_:'T'T'_."@'Q"_Q"_' !




Ouroboros Praos: Protocol overview

» time divided into consecutive, disjoint slots

» epoch: sequence of R slots

» slot leader: a player allowed to create block in that slot

» stake distribution: snapshot from last block 2 epochs ago

» randomness: hash of values in prefix of previous epoch
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Hashing for epoch randomness

r n
unique,

Verifiable Random Functions: %ra”dom J
- Evaluate_(input) = (output, proof)

o Verifypk(input, output, proof) =0/1
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Hashing for epoch randomness

Verifiable Random Functions:
- Evaluate_(input) = (output, proof)
o Verifypk(input, output, proof) =0/1

» every leader inserts a separate VRF (value,proof)
into block

sig (1 )
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Hashing for epoch randomness

Verifiable Random Functions:
- Evaluate_(input) = (output, proof)
o Verifypk(input, output, proof) =0/1 i
O

Txs

. every leader inserts a separate VRF (value,proof)

into block
. hash of VRF values from initial %5 of epoch give ,
sig (1 )

randomness for the whole next epoch
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Single-epoch setting
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Focus on one epoch of length R
» static stake distribution
o i1deal randomness



Leader selection: local, private

Veritiable Random Functions:
- Evaluate  (input) = (output, proof)
s Verifypk(input, output, proof) =0/1

Leader selection lottery for stakeholder U.:

Evaluate  (rnd,slot) < ¢(stake.)
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Included in the block
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Leader selection: local, private

Veritiable Random Functions:
- Evaluate  (input) = (output, proof)
s Verifypk(input, output, proof) =0/1

Leader selection lottery for stakeholder U.:
Evaluate  (rnd,slot) < ¢(stake.)
» similar idea previously in NXT, Algorand

» needs unpredictability under malicious key generation
» UC-functionality + efficient realization from CDH+RO



Leader selection: local, private

Veritiable Random Functions:
- Evaluate  (input) = (output, proof)
s Verifypk(input, output, proof) =0/1

Leader selection lottery for stakeholder U.:

Evaluate  (rnd,slot) <[¢(stakei) ]

» similar idea previously in NXT, Algorand
» needs unpredictability under malicious key generation
» UC-functionality + efficient realization from CDH+RO



Leader selection: choice of ¢(.)
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e ratio of non-empty slots f is a protocol parameter
o slightly sublinear growth B iy o
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Block signing:
Key-evolving signatures

KES are signature schemes, where:
» pk remains the same
» sk updated in every step, old sk erased

» 1impossible to forge old signatures with
new keys



Block signing:
Key-evolving signatures

KES are signature schemes, where:
» pk remains the same
» sk updated in every step, old sk erased

» 1impossible to forge old signatures with
new keys

Txs

H(prev)

Slot #
» used for signing blocks

 helps achieve adaptive security
» UC-functionality + realization

sig, ()




Validity of a chain

A valid blockchain in single-epoch setting:
1 2 3 = 5 6 7
w-B——1 33
 increasing slot numbers
» each block contains:
» correct VRF-pair proving eligibility

» correct VRF-pair for randomness derivation
» KES-signature by eligible leader



The Protocol (single epoch)

» For each slot:
o Collect all transactions.

» Collect all broadcast blockchains. Cull according to
validity; maintain the longest one C.

o If leader, add a new block in this slot with all
transactions (consistent with C) to the end of C. Sign
it and broadcast.



Ouroboros Praos:
Security Analysis




Proven Guarantees

v/ Common Prefix (k): Any 2 chains possessed by 2 honest parties:
one is a prefix of the other except for at most k last blocks.

v/ Chain Growth (s,¥): Any chain possessed by an honest party has
at least ts blocks over any sequence of s slots.

v/ Chain Quality (k): Any chain possessed by an honest party
contains an honest block among last k blocks.



Proven Guarantees

v/ Common Prefix (k): Any 2 chains possessed by 2 honest parties:
one is a prefix of the other except for at most k last blocks.

v/ Chain Growth (s,¥): Any chain possessed by an honest party has
at least ts blocks over any sequence of s slots.

v/ Chain Quality (k): Any chain possessed by an honest party
contains an honest block among last k blocks.

These are known to imply what we want:
v/ Persistence
v/ Liveness



Proof Outline

L CP, CG, CO
» single-epoch setting, static corruption
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Proof Outline

1 CP CG,CO

» single-epoch setting, static corruption
2. Adaptive adversaries

» dominated by a “greedy” static adversary
3. Lifting to multiple epochs

» security of the (stake dist., randomness)-update
mechanism



1. Single-epoch, static CP, CG, CQ

Unlike a bitcoin adversary, our adversary:

» knows which slots he controls ahead of time
» can generate multiple blocks per slot for free

This additional power can be contained.

» extension of a blockchain calculus from [KRDO17]
o here: only CP



Characteristic strings and forks
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In a fixed execution...

o characteristic string: describes the leader assighment
o fork: tree that captures all constructed chains

o one char. string admits many forks

» some forks are bad (create large CP-violation)



Characteristic strings and forks
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In the random experiment...
» symbols of char. string are i.i.d.

» Goal: w.h.p. we get a char. string that admits no bad
forks

0



Reduction to synchronous case

Synchronous case [KRDO17]

» synchronous forks (special case)
» no empty slots (no L)



Reduction to synchronous case

Synchronous case [KRDO17]

» synchronous forks (special case)
» no empty slots (no L)

Reduction mapping p,(w): {0,1, L} —{0,1}

o results in an “almost” binomial distribution
» preserves CP-violations!



Bounding synchronous CP

Theorem from [KRDO17, RMKQ17]:
Draw w=w....w _from the binomial distribution with
parameter (1-g)/2. Then

Pr[k-CP violation] < ne “®.

Proof:
» martingale argument



2. Adaptive adversaries
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2. Adaptive adversaries

» consider leadership elections for individual coins
» equivalent thanks to “independent aggregation”

o let the adversary corrupt individual coins
» more powerful than before

» yet-uncorrupted coins are indistinguishable
» thanks to key-evolving signatures

» “greedy” static adversary dominates any adaptive one



3. Lifting to multiple epochs




3. Lifting to multiple epochs

» stake distribution: snapshot from the last block 2 epochs ago

» randomness: hash of VRF-values in first %5 of previous epoch
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3. Lifting to multiple epochs

» stake distribution: snapshot from the last block 2 epochs ago

» randomness: hash of VRF-values in first %5 of previous epoch
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3. Lifting to multiple epochs

» stake distribution: snapshot from the last block 2 epochs ago

» randomness: hash of VRF-values in first %5 of previous epoch
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3. Lifting to multiple epochs

» stake distribution: snapshot from the last block 2 epochs ago

» randomness: hash of VRF-values in first %5 of previous epoch
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3. Lifting to multiple epochs

» stake distribution: snapshot from the last block 2 epochs ago

» randomness: hash of VRF-values in first %5 of previous epoch
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» some “grinding” still possible
» small number of “resamplings”

» insufficient to boost exponentially small error probabilities



Follow-up: Ouroboros Genesis

Improved Ouroboros Praos that:
e provides bootstrapping from genesis block

e UC-realizes the Ledger functionality from [BMTZ17]

e achieves security with dynamic availability



Thank you for your attention!

» Ouroboros: [Crypto’17]

https:/ /eprint.iacr.org /2016 /889

o Ouroboros Praos: |[Eurocrypt’18]

https:/ /eprint.iacr.org /2017 /573

o QOuroboros Genesis:

https:/ /eprint.iacr.org /2018 /378



