OUROBOROS PRAOS:

AN ADAPTIVELY-SECURE, SEMI-SYNCHRONOUS
PROOF-OF-STAKE BLOCKCHAIN

Bernardo David Peter Gazi Aggelos Kiayias Alexander Russell
Tokyo Tech IOHK U. Edinburgh U. Connecticut
& IOHK & IOHK

Eurocrypt 2018

Roadmap

» Proof-of-work vs. Proof-of-stake blockchains
o« Quroboros Praos
» Protocol Description

» Security Analysis

The problem Bitcoin solves

» Allows a collection of parties to agree on a dynamic, common
sequence of transactions—a ledger.

» persistence: past transactions in ledger are immutable
» liveness: new transactions are eventually included
» parties may arise and disappear

» some parties may seek to disrupt the system

Bitcoin as a leader election process,
proof of work

#

#

|I e parties compete for the right to extend
e winning certificate: PoW solution
o Pr[success] proportional to computing power

Bitcoin: Laudatory remarks

» Simple
» neatly solves a challenge: consensus with a fluid
population of participants

» Sidesteps previous impossibility results
» thanks to a new assumption (honest majority of
comp. power)

» Amenable to formal analysis
» [GKL15,PS517,BMTZ17]

Bitcoin: Criticism

relies on an ongoing computational race
power consumption estimates:
on the order of GWs

almost tripled over the last 6 months

Attack cost proportional to the energy spent in the
attack period.

Challenge: Replace “proof-of-work™
with alternate resource lottery

» other physical resources, with different properties
» disk space

» useful computation/storage

» virtual resource: coin itself
— Proof of Stake

Proof of Stake:
stake-based lottery

» blockchain tracks ownership of coins among parties
» Idea: participants elected proportionally to stake
= no need for physical resources

» hard to implement securely

Previous proof-of-stake solutions
with rigorous guarantees

Eventual (Nakamoto-style) Consensus:
o Ouroboros [KRDO16]
o« Snow White [DPS16]

Blockwise Byzantine Agreement:
» Algorand [CM16]

Ouroboros

Provably guarantees

» persistence: stable transactions are immutabl

» liveness: new transactions included eventuall

Ouroboros

Provably guarantees

if

persistence: stable transactions are immutab’

liveness: new transactions included eventual

€

o

adversary has minority stake throughout

adversary subject to corruption delay

communication is synchronous

Ouroboros Praos

Provably guarantees

» persistence: stable transactions are immutable

» liveness: new transactions included eventually
if

» adversary has minority stake throughout

s b : 1]

’ .]

Ouroboros Praos in a Nutshell

First eventual-consensus oS secure
» 1n a semi-synchronous communication model
» despite fully adaptive corruptions
via
o local, private leader selection
» forward-secure signatures

» blockchain hashing for randomness (scalability!)

Ouroboros Praos:
Protocol Description

Communication Model

» assume synchronized clocks
» time divided into slots

» honest messages may be adversarially delayed by at
most A slots

e A is unknown to the protocol

» adversary may send arbitrary messages to arbitrary
subsets, arriving at arbitrary times

Ouroboros Praos: Protocol overview

» time divided into consecutive, disjoint slots

Ouroboros Praos: Protocol overview

» time divided into consecutive, disjoint slots
» atmost 1 block per slot allowed

-B-0-0-0-0-0-0-0-0-0-0-0

—>

Ouroboros Praos: Protocol overview

» time divided into consecutive, disjoint slots

» epoch: sequence of R slots

—] } " ; ; : " "

! —

Ouroboros Praos: Protocol overview

» time divided into consecutive, disjoint slots
» epoch: sequence of R slots

» slot leader: a player allowed to create block in that slot
» selected proportionally to his/her stake

(O B B B B B B B B BN NN
-1-8-0-0-8-0-0-1-0-1-1-1

Ouroboros Praos: Protocol overview

» time divided into consecutive, disjoint slots
» epoch: sequence of R slots

» slot leader: a player allowed to create block in that slot
» selected proportionally to his/her stake
» independent for each slot and each player
» =>empty slots, multi-leader slots

5§ Fe 2 ¥ 3
Bakiainn 14

T] 1 [[|
L] L] L] L] L

Ouroboros Praos: Protocol overview

» time divided into consecutive, disjoint slots
» epoch: sequence of R slots

» slot leader: a player allowed to create block in that slot
» selected proportionally to his/her stake
» independent for each slot and each player
» =>empty slots, multi-leader slots

=] i i ; |

i y y y ;] —

Ouroboros Praos: Protocol overview

» time divided into consecutive, disjoint slots
» epoch: sequence of R slots
» slot leader: a player allowed to create block in that slot

» stake distribution: snapshot from last block 2 epochs ago

TQ"_:'T'T'_."@'Q"_Q"_' !

Ouroboros Praos: Protocol overview

» time divided into consecutive, disjoint slots

» epoch: sequence of R slots

» slot leader: a player allowed to create block in that slot

» stake distribution: snapshot from last block 2 epochs ago

» randomness: hash of values in prefix of previous epoch

g,_”i"_, N B |
-B—0-1—18

<-<-<-—<-—.

Hashing for epoch randomness

r n
unique,

Verifiable Random Functions: %ra”dom J
- Evaluate_(input) = (output, proof)

o Verifypk(input, output, proof) =0/1

H(.)
‘—I—‘
= | i i i | ; ; ; ! !

F

Hashing for epoch randomness

Verifiable Random Functions:
- Evaluate_(input) = (output, proof)
o Verifypk(input, output, proof) =0/1

» every leader inserts a separate VRF (value,proof)
into block

sig (1)

H(.)
‘—I—‘
= | : i i ; ; ; : !

T } —

Hashing for epoch randomness

Verifiable Random Functions:
- Evaluate_(input) = (output, proof)
o Verifypk(input, output, proof) =0/1 i
O

Txs

. every leader inserts a separate VRF (value,proof)

into block
. hash of VRF values from initial %5 of epoch give ,
sig (1)

randomness for the whole next epoch

H(= [| =]...)

F

VRF proof

e[| []
| | |

Single-epoch setting

v —01-1—01-1-1—1
I ; ; ; 3 3 3 j ; ;

>

Focus on one epoch of length R
» static stake distribution
o i1deal randomness

Leader selection: local, private

Veritiable Random Functions:
- Evaluate (input) = (output, proof)
s Verifypk(input, output, proof) =0/1

Leader selection lottery for stakeholder U.:

Evaluate (rnd,slot) < ¢(stake.)

e \

(output,proof)

Included in the block
_ J

Leader selection: local, private

Veritiable Random Functions:
- Evaluate (input) = (output, proof)
s Verifypk(input, output, proof) =0/1

Leader selection lottery for stakeholder U.:
Evaluate (rnd,slot) < ¢(stake.)
» similar idea previously in NXT, Algorand

» needs unpredictability under malicious key generation
» UC-functionality + efficient realization from CDH+RO

Leader selection: local, private

Veritiable Random Functions:
- Evaluate (input) = (output, proof)
s Verifypk(input, output, proof) =0/1

Leader selection lottery for stakeholder U.:

Evaluate (rnd,slot) <[¢(stakei)]

» similar idea previously in NXT, Algorand
» needs unpredictability under malicious key generation
» UC-functionality + efficient realization from CDH+RO

Leader selection: choice of ¢(.)

() =1-(1-f)® a€[0,1]
f€l0A]
e ratio of non-empty slots f is a protocol parameter
o slightly sublinear growth B iy o

o af2

e maintains “independent aggregation” 04

1 — ¢ (Z (11-) — H(l — d(a;)) 0.2 |

/) /)

0
0 02 04 06 . 08

1

Block signing:
Key-evolving signatures

KES are signature schemes, where:
» pk remains the same
» sk updated in every step, old sk erased

» 1impossible to forge old signatures with
new keys

Block signing:
Key-evolving signatures

KES are signature schemes, where:
» pk remains the same
» sk updated in every step, old sk erased

» 1impossible to forge old signatures with
new keys

Txs

H(prev)

Slot #
» used for signing blocks

 helps achieve adaptive security
» UC-functionality + realization

sig, ()

Validity of a chain

A valid blockchain in single-epoch setting:
1 2 3 = 5 6 7
w-B——1 33
 increasing slot numbers
» each block contains:
» correct VRF-pair proving eligibility

» correct VRF-pair for randomness derivation
» KES-signature by eligible leader

The Protocol (single epoch)

» For each slot:
o Collect all transactions.

» Collect all broadcast blockchains. Cull according to
validity; maintain the longest one C.

o If leader, add a new block in this slot with all
transactions (consistent with C) to the end of C. Sign
it and broadcast.

Ouroboros Praos:
Security Analysis

Proven Guarantees

v/ Common Prefix (k): Any 2 chains possessed by 2 honest parties:
one is a prefix of the other except for at most k last blocks.

v/ Chain Growth (s,¥): Any chain possessed by an honest party has
at least ts blocks over any sequence of s slots.

v/ Chain Quality (k): Any chain possessed by an honest party
contains an honest block among last k blocks.

Proven Guarantees

v/ Common Prefix (k): Any 2 chains possessed by 2 honest parties:
one is a prefix of the other except for at most k last blocks.

v/ Chain Growth (s,¥): Any chain possessed by an honest party has
at least ts blocks over any sequence of s slots.

v/ Chain Quality (k): Any chain possessed by an honest party
contains an honest block among last k blocks.

These are known to imply what we want:
v/ Persistence
v/ Liveness

Proof Outline

L CP, CG, CO
» single-epoch setting, static corruption

Proof Outline

1 CP CG,CO
» single-epoch setting, static corruption
2. Adaptive adversaries
» dominated by a “greedy” static adversary

Proof Outline

1 CP CG,CO

» single-epoch setting, static corruption
2. Adaptive adversaries

» dominated by a “greedy” static adversary
3. Lifting to multiple epochs

» security of the (stake dist., randomness)-update
mechanism

1. Single-epoch, static CP, CG, CQ

Unlike a bitcoin adversary, our adversary:

» knows which slots he controls ahead of time
» can generate multiple blocks per slot for free

This additional power can be contained.

» extension of a blockchain calculus from [KRDO17]
o here: only CP

Characteristic strings and forks

©-©

© @

uON0,

w = 0 i b 1 i i 0 0 0 G 4 2 b 1 1 0

In a fixed execution...

o characteristic string: describes the leader assighment
o fork: tree that captures all constructed chains

o one char. string admits many forks

» some forks are bad (create large CP-violation)

Characteristic strings and forks

2Ou0

O &
~©-0

0 0 G 4 2 b 1 1

w = 0 i 1 1 0

In the random experiment...
» symbols of char. string are i.i.d.

» Goal: w.h.p. we get a char. string that admits no bad
forks

0

Reduction to synchronous case

Synchronous case [KRDO17]

» synchronous forks (special case)
» no empty slots (no L)

Reduction to synchronous case

Synchronous case [KRDO17]

» synchronous forks (special case)
» no empty slots (no L)

Reduction mapping p,(w): {0,1, L} —{0,1}

o results in an “almost” binomial distribution
» preserves CP-violations!

Bounding synchronous CP

Theorem from [KRDO17, RMKQ17]:
Draw w=w....w _from the binomial distribution with
parameter (1-g)/2. Then

Pr[k-CP violation] < ne “®.

Proof:
» martingale argument

2. Adaptive adversaries

2. Adaptive adversaries

» consider leadership elections for individual coins
» equivalent thanks to “independent aggregation”

2. Adaptive adversaries

» consider leadership elections for individual coins
» equivalent thanks to “independent aggregation”

o let the adversary corrupt individual coins
» more powerful than before

2. Adaptive adversaries

» consider leadership elections for individual coins
» equivalent thanks to “independent aggregation”

o let the adversary corrupt individual coins
» more powerful than before

» yet-uncorrupted coins are indistinguishable
» thanks to key-evolving signatures

2. Adaptive adversaries

» consider leadership elections for individual coins
» equivalent thanks to “independent aggregation”

o let the adversary corrupt individual coins
» more powerful than before

» yet-uncorrupted coins are indistinguishable
» thanks to key-evolving signatures

» “greedy” static adversary dominates any adaptive one

3. Lifting to multiple epochs

3. Lifting to multiple epochs

» stake distribution: snapshot from the last block 2 epochs ago

» randomness: hash of VRF-values in first %5 of previous epoch

H(= || =I...)
‘—l—‘

~ | y —

3. Lifting to multiple epochs

» stake distribution: snapshot from the last block 2 epochs ago

» randomness: hash of VRF-values in first %5 of previous epoch

H(= || =I...)
‘—l—‘

— i ; ; ; " ; ; ; ; = !

CG+CP:
stake
distribution
stabilizes

3. Lifting to multiple epochs

» stake distribution: snapshot from the last block 2 epochs ago

» randomness: hash of VRF-values in first %5 of previous epoch

H(= || =I...)
‘—l—‘

— | ; =
CG+CP: CG+CQ:
stake honest block
distribution affects

stabilizes randomness

3. Lifting to multiple epochs

» stake distribution: snapshot from the last block 2 epochs ago

» randomness: hash of VRF-values in first %5 of previous epoch

H(= || =I...)
‘—l—‘

— | } |
CG+CP: CG+CQ: CG+CP:
stake honest block randomness
distribution affects stabilizes

stabilizes randomness

3. Lifting to multiple epochs

» stake distribution: snapshot from the last block 2 epochs ago

» randomness: hash of VRF-values in first %5 of previous epoch

H(=|[=]...)
l—.—\
=} | : ' : ' - ' y g !

F

» some “grinding” still possible
» small number of “resamplings”

» insufficient to boost exponentially small error probabilities

Follow-up: Ouroboros Genesis

Improved Ouroboros Praos that:
e provides bootstrapping from genesis block

e UC-realizes the Ledger functionality from [BMTZ17]

e achieves security with dynamic availability

Thank you for your attention!

» Ouroboros: [Crypto’17]

https:/ /eprint.iacr.org /2016 /889

o Ouroboros Praos: |[Eurocrypt’18]

https:/ /eprint.iacr.org /2017 /573

o QOuroboros Genesis:

https:/ /eprint.iacr.org /2018 /378

