
Peter Gaži
IOHK

OUROBOROS PRAOS:
AN ADAPTIVELY-SECURE, SEMI-SYNCHRONOUS

PROOF-OF-STAKE BLOCKCHAIN

Eurocrypt 2018

Aggelos Kiayias
U. Edinburgh

& IOHK

Bernardo David
Tokyo Tech

 & IOHK

Alexander Russell
U. Connecticut

Roadmap

● Proof-of-work vs. Proof-of-stake blockchains

● Ouroboros Praos

● Protocol Description

● Security Analysis

The problem Bitcoin solves

● Allows a collection of parties to agree on a dynamic, common
sequence of transactions—a ledger.

● persistence: past transactions in ledger are immutable

● liveness: new transactions are eventually included

● parties may arise and disappear

● some parties may seek to disrupt the system

Bitcoin as a leader election process,
proof of work

● parties compete for the right to extend
● winning certificate: PoW solution
● Pr[success] proportional to computing power

?…………….

Bitcoin: Laudatory remarks

● Simple
● neatly solves a challenge: consensus with a fluid

population of participants
● Sidesteps previous impossibility results

● thanks to a new assumption (honest majority of
comp. power)

● Amenable to formal analysis
● [GKL15,PSS17,BMTZ17]

Bitcoin: Criticism

● relies on an ongoing computational race
● power consumption estimates:

● on the order of GWs
● almost tripled over the last 6 months

● Attack cost proportional to the energy spent in the
attack period.

Challenge: Replace “proof-of-work”
with alternate resource lottery

● other physical resources, with different properties
● disk space
● useful computation/storage
● ...

● virtual resource: coin itself
⇒ Proof of Stake

Proof of Stake:
stake-based lottery

● blockchain tracks ownership of coins among parties

● Idea: participants elected proportionally to stake

⇒ no need for physical resources

● hard to implement securely

Previous proof-of-stake solutions
with rigorous guarantees

Eventual (Nakamoto-style) Consensus:
● Ouroboros [KRDO16]
● Snow White [DPS16]

Blockwise Byzantine Agreement:
● Algorand [CM16]

Ouroboros

Provably guarantees
● persistence: stable transactions are immutable

● liveness: new transactions included eventually

Ouroboros

Provably guarantees
● persistence: stable transactions are immutable

● liveness: new transactions included eventually

if
● adversary has minority stake throughout
● adversary subject to corruption delay
● communication is synchronous

Ouroboros Praos

Provably guarantees
● persistence: stable transactions are immutable

● liveness: new transactions included eventually

if
● adversary has minority stake throughout
● adversary subject to corruption delay
● communication is synchronous

Ouroboros Praos in a Nutshell

First eventual-consensus PoS secure

● in a semi-synchronous communication model

● despite fully adaptive corruptions

via

● local, private leader selection

● forward-secure signatures

● blockchain hashing for randomness (scalability!)

Ouroboros Praos:
Protocol Description

Communication Model

● assume synchronized clocks
● time divided into slots
● honest messages may be adversarially delayed by at

most ᵂ slots
● ᵂ is unknown to the protocol

● adversary may send arbitrary messages to arbitrary
subsets, arriving at arbitrary times

Ouroboros Praos: Protocol overview

● time divided into consecutive, disjoint slots

Ouroboros Praos: Protocol overview

● time divided into consecutive, disjoint slots
● at most 1 block per slot allowed

● time divided into consecutive, disjoint slots
● epoch: sequence of R slots

Ouroboros Praos: Protocol overview

● time divided into consecutive, disjoint slots
● epoch: sequence of R slots

● slot leader: a player allowed to create block in that slot
● selected proportionally to his/her stake

Ouroboros Praos: Protocol overview

● time divided into consecutive, disjoint slots
● epoch: sequence of R slots

● slot leader: a player allowed to create block in that slot
● selected proportionally to his/her stake
● independent for each slot and each player

● => empty slots, multi-leader slots

Ouroboros Praos: Protocol overview

● time divided into consecutive, disjoint slots
● epoch: sequence of R slots

● slot leader: a player allowed to create block in that slot
● selected proportionally to his/her stake
● independent for each slot and each player

● => empty slots, multi-leader slots

Ouroboros Praos: Protocol overview

● time divided into consecutive, disjoint slots
● epoch: sequence of R slots

● slot leader: a player allowed to create block in that slot

● stake distribution: snapshot from last block 2 epochs ago

Ouroboros Praos: Protocol overview

● time divided into consecutive, disjoint slots
● epoch: sequence of R slots

● slot leader: a player allowed to create block in that slot

● stake distribution: snapshot from last block 2 epochs ago

● randomness: hash of values in prefix of previous epoch

H(.)

Ouroboros Praos: Protocol overview

Hashing for epoch randomness

Verifiable Random Functions:
● Evaluatesk(input) = (output, proof)
● Verifypk(input, output, proof) = 0/1

H(.)

unique,
pseudorandom

Hashing for epoch randomness

Verifiable Random Functions:
● Evaluatesk(input) = (output, proof)
● Verifypk(input, output, proof) = 0/1

● every leader inserts a separate VRF (value,proof)
into block

Txs
H(prev)

Slot #

sigLi()

VRF proof

VRF output

H(.)

Hashing for epoch randomness

Verifiable Random Functions:
● Evaluatesk(input) = (output, proof)
● Verifypk(input, output, proof) = 0/1

● every leader inserts a separate VRF (value,proof)
into block

● hash of VRF values from initial ⅔ of epoch give
randomness for the whole next epoch

Txs
H(prev)

Slot #

sigLi()

VRF output

VRF proof

H(|| ||...)

Single-epoch setting

Focus on one epoch of length R
● static stake distribution
● ideal randomness

Leader selection: local, private

Verifiable Random Functions:
● Evaluatesk(input) = (output, proof)
● Verifypk(input, output, proof) = 0/1

Leader selection lottery for stakeholder Ui:

Evaluatesk(rnd,slot) < ᶰ(stakei)

(output,proof)
included in the block

Verifiable Random Functions:
● Evaluatesk(input) = (output, proof)
● Verifypk(input, output, proof) = 0/1

Leader selection lottery for stakeholder Ui:

Evaluatesk(rnd,slot) < ᶰ(stakei)

● similar idea previously in NXT, Algorand
● needs unpredictability under malicious key generation
● UC-functionality + efficient realization from CDH+RO

Leader selection: local, private

Leader selection: local, private

Verifiable Random Functions:
● Evaluatesk(input) = (output, proof)
● Verifypk(input, output, proof) = 0/1

Leader selection lottery for stakeholder Ui:

Evaluatesk(rnd,slot) < ᶰ(stakei)

● similar idea previously in NXT, Algorand
● needs unpredictability under malicious key generation
● UC-functionality + efficient realization from CDH+RO

Leader selection: choice of ᶰ(.)

α∊[0,1]

f ∊[0,1]

● ratio of non-empty slots f is a protocol parameter

● slightly sublinear growth

● maintains “independent aggregation”

Block signing:
Key-evolving signatures
KES are signature schemes, where:

● pk remains the same
● sk updated in every step, old sk erased
● impossible to forge old signatures with

new keys

Block signing:
Key-evolving signatures
KES are signature schemes, where:

● pk remains the same
● sk updated in every step, old sk erased
● impossible to forge old signatures with

new keys

● used for signing blocks
● helps achieve adaptive security
● UC-functionality + realization

Txs

H(prev)

Slot #

sigLi()

...

Validity of a chain

A valid blockchain in single-epoch setting:

● increasing slot numbers
● each block contains:

● correct VRF-pair proving eligibility
● correct VRF-pair for randomness derivation
● KES-signature by eligible leader

1 2 3 4 5 6 7

The Protocol (single epoch)

● For each slot:

● Collect all transactions.

● Collect all broadcast blockchains. Cull according to
validity; maintain the longest one C.

● If leader, add a new block in this slot with all
transactions (consistent with C) to the end of C. Sign
it and broadcast.

Ouroboros Praos:
Security Analysis

Proven Guarantees

✓ Common Prefix (k): Any 2 chains possessed by 2 honest parties:
one is a prefix of the other except for at most k last blocks.

✓ Chain Growth (s,ᵬ): Any chain possessed by an honest party has
at least ᵬs blocks over any sequence of s slots.

✓ Chain Quality (k): Any chain possessed by an honest party
contains an honest block among last k blocks.

Proven Guarantees

✓ Common Prefix (k): Any 2 chains possessed by 2 honest parties:
one is a prefix of the other except for at most k last blocks.

✓ Chain Growth (s,ᵬ): Any chain possessed by an honest party has
at least ᵬs blocks over any sequence of s slots.

✓ Chain Quality (k): Any chain possessed by an honest party
contains an honest block among last k blocks.

These are known to imply what we want:
✓ Persistence
✓ Liveness

Proof Outline

1. CP, CG, CQ
● single-epoch setting, static corruption

Proof Outline

1. CP, CG, CQ
● single-epoch setting, static corruption

2. Adaptive adversaries
● dominated by a “greedy” static adversary

Proof Outline

1. CP, CG, CQ
● single-epoch setting, static corruption

2. Adaptive adversaries
● dominated by a “greedy” static adversary

3. Lifting to multiple epochs
● security of the (stake dist., randomness)-update

mechanism

1. Single-epoch, static CP, CG, CQ

Unlike a bitcoin adversary, our adversary:

● knows which slots he controls ahead of time
● can generate multiple blocks per slot for free

This additional power can be contained.

● extension of a blockchain calculus from [KRDO17]
● here: only CP

Characteristic strings and forks

In a fixed execution...
● characteristic string: describes the leader assignment
● fork: tree that captures all constructed chains
● one char. string admits many forks
● some forks are bad (create large CP-violation)

Characteristic strings and forks

In the random experiment...
● symbols of char. string are i.i.d.
● Goal: w.h.p. we get a char. string that admits no bad

forks

Reduction to synchronous case

Synchronous case [KRDO17]

● synchronous forks (special case)
● no empty slots (no ⊥)

Reduction to synchronous case

Synchronous case [KRDO17]

● synchronous forks (special case)
● no empty slots (no ⊥)

Reduction mapping ⍴ᵂ(w): {0,1,⊥}* →{0,1}*

● results in an “almost” binomial distribution
● preserves CP-violations!

Bounding synchronous CP

Theorem from [KRDO17,RMKQ17]:
Draw w=w1…wn from the binomial distribution with
parameter (1-ᶗ)/2. Then

 Pr[k-CP violation] ≤ ne -Ω(k).

Proof:
● martingale argument

2. Adaptive adversaries

2. Adaptive adversaries

● consider leadership elections for individual coins
● equivalent thanks to “independent aggregation”

2. Adaptive adversaries

● consider leadership elections for individual coins
● equivalent thanks to “independent aggregation”

● let the adversary corrupt individual coins
● more powerful than before

2. Adaptive adversaries

● consider leadership elections for individual coins
● equivalent thanks to “independent aggregation”

● let the adversary corrupt individual coins
● more powerful than before

● yet-uncorrupted coins are indistinguishable
● thanks to key-evolving signatures

2. Adaptive adversaries

● consider leadership elections for individual coins
● equivalent thanks to “independent aggregation”

● let the adversary corrupt individual coins
● more powerful than before

● yet-uncorrupted coins are indistinguishable
● thanks to key-evolving signatures

● “greedy” static adversary dominates any adaptive one

3. Lifting to multiple epochs

3. Lifting to multiple epochs

● stake distribution: snapshot from the last block 2 epochs ago

● randomness: hash of VRF-values in first ⅔ of previous epoch
H(|| ||...)

3. Lifting to multiple epochs

● stake distribution: snapshot from the last block 2 epochs ago

● randomness: hash of VRF-values in first ⅔ of previous epoch
H(|| ||...)

CG+CP:
stake
distribution
stabilizes

3. Lifting to multiple epochs

● stake distribution: snapshot from the last block 2 epochs ago

● randomness: hash of VRF-values in first ⅔ of previous epoch
H(|| ||...)

CG+CQ:
honest block
affects
randomness

CG+CP:
stake
distribution
stabilizes

3. Lifting to multiple epochs

● stake distribution: snapshot from the last block 2 epochs ago

● randomness: hash of VRF-values in first ⅔ of previous epoch
H(|| ||...)

CG+CQ:
honest block
affects
randomness

CG+CP:
stake
distribution
stabilizes

CG+CP:
randomness
stabilizes

3. Lifting to multiple epochs

● stake distribution: snapshot from the last block 2 epochs ago

● randomness: hash of VRF-values in first ⅔ of previous epoch
H(|| ||...)

● some “grinding” still possible

● small number of “resamplings”

● insufficient to boost exponentially small error probabilities

Follow-up: Ouroboros Genesis

Improved Ouroboros Praos that:

● provides bootstrapping from genesis block

● UC-realizes the Ledger functionality from [BMTZ17]

● achieves security with dynamic availability

[Badertscher, Gaži, Kiayias, Russell, Zikas’18]

Thank you for your attention!

● Ouroboros: [Crypto’17]

https://eprint.iacr.org/2016/889

● Ouroboros Praos: [Eurocrypt’18]

https://eprint.iacr.org/2017/573

● Ouroboros Genesis:

https://eprint.iacr.org/2018/378

