
But Why Does it Work?
A Rational Protocol Design Treatment of Bitcoin

EUROCRYPT 2018

Ueli Maurer
ETH Zurich

Christian Badertscher
ETH Zurich

Vassilis Zikas
University of Edinburgh & IOHK

Daniel Tschudi
ETH Zurich

Juan Garay
Texas A&M

The Evolution of Bitcoin: A Partial View
Time

The Evolution of Bitcoin: A Partial View
Time

2008/09 White Paper & Genesis
And Nakamoto said:
 Let there be Bitcoin…

The Evolution of Bitcoin: A Partial View
Time

2008/09 White Paper & Genesis
And Nakamoto said:
 Let there be Bitcoin…

The Bitcoin community

The Evolution of Bitcoin: A Partial View
Time

2008/09 White Paper & Genesis
And Nakamoto said:
 Let there be Bitcoin…

The Bitcoin community

Rational analysis and attacks
• Selfish Mining: Bitcoin is not an equilibrium

strategy [ES14]
• ….

The Evolution of Bitcoin: A Partial View
Time

2008/09 White Paper & Genesis
And Nakamoto said:
 Let there be Bitcoin…

The Bitcoin community

Rational analysis and attacks
• Selfish Mining: Bitcoin is not an equilibrium

strategy [ES14]
• ….

Cryptographic analysis: Backbone (consensus
layer) is secure if and only if the computing
power of adversarial nodes does not form a
majority [GKL15, PSS17]

The Evolution of Bitcoin: A Partial View
Time

2008/09 White Paper & Genesis
And Nakamoto said:
 Let there be Bitcoin…

The Bitcoin community

Rational analysis and attacks
• Selfish Mining: Bitcoin is not an equilibrium

strategy [ES14]
• ….

Cryptographic analysis: Backbone (consensus
layer) is secure if and only if the computing
power of adversarial nodes does not form a
majority [GKL15, PSS17]

The Evolution of Bitcoin: A Partial View
Time

2018 Bitcoin still works and no attack on its “backbone” has
been observed!

2008/09 White Paper & Genesis
And Nakamoto said:
 Let there be Bitcoin…

The Bitcoin community

Rational analysis and attacks
• Selfish Mining: Bitcoin is not an equilibrium

strategy [ES14]
• ….

Cryptographic analysis: Backbone (consensus
layer) is secure if and only if the computing
power of adversarial nodes does not form a
majority [GKL15, PSS17]

Why Does it Work?
Why don’t the predicted attacks

occur and entirely break it?

Nostradamus

Why Does it Work?

It doesn’t! Not an equilibrium.
Just a temporary anomaly.

Why don’t the predicted attacks
occur and entirely break it?

Nostradamus

Why Does it Work?

It doesn’t! Not an equilibrium.
Just a temporary anomaly.

Because the majority of computing
power is controlled by honest miners

Why don’t the predicted attacks
occur and entirely break it?

Nostradamus

Why Does it Work?

It doesn’t! Not an equilibrium.
Just a temporary anomaly.

Because the majority of computing
power is controlled by honest miners

In game-theoretic analysis
• Utilities = assumptions to

explain/predict players behavior
• If predictions ≠ observable then

utilities (and game?) can
(should?) be rethought.

Why don’t the predicted attacks
occur and entirely break it?

Nostradamus

Why Does it Work?

It doesn’t! Not an equilibrium.
Just a temporary anomaly.

but … why … ?

Because the majority of computing
power is controlled by honest miners

In game-theoretic analysis
• Utilities = assumptions to

explain/predict players behavior
• If predictions ≠ observable then

utilities (and game?) can
(should?) be rethought.

Why don’t the predicted attacks
occur and entirely break it?

Nostradamus

Why Does it Work?

It doesn’t! Not an equilibrium.
Just a temporary anomaly.

but … why … ?

Because the majority of computing
power is controlled by honest miners

In game-theoretic analysis
• Utilities = assumptions to

explain/predict players behavior
• If predictions ≠ observable then

utilities (and game?) can
(should?) be rethought.

Can we back this up by a rational
assumption?
• Because the adversary has no

incentive to break it (either by
corrupting majority or otherwise)

Why don’t the predicted attacks
occur and entirely break it?

Nostradamus

Why Does it Work?

It doesn’t! Not an equilibrium.
Just a temporary anomaly.

but … why … ?

Because the majority of computing
power is controlled by honest miners

In game-theoretic analysis
• Utilities = assumptions to

explain/predict players behavior
• If predictions ≠ observable then

utilities (and game?) can
(should?) be rethought.

Can we back this up by a rational
assumption?
• Because the adversary has no

incentive to break it (either by
corrupting majority or otherwise)

Why don’t the predicted attacks
occur and entirely break it?

Calls for an alternative rational treatment

Nostradamus

Our Contributions

• A new model for rational analysis of Bitcoin

• Applying the framework to analyze the Bitcoin backbone

• A class of utilities reflecting “minimal” assumptions about
the Bitcoin miners’ incentives.

• Deriving predictions that match the observable.

Our Contributions

• A new model for rational analysis of Bitcoin

• Applying the framework to analyze the Bitcoin backbone

• A class of utilities reflecting “minimal” assumptions about
the Bitcoin miners’ incentives.

• Deriving predictions that match the observable.

Blockchains

Our Contributions

• A new model for rational analysis of Bitcoin

• Applying the framework to analyze the Bitcoin backbone

• A class of utilities reflecting “minimal” assumptions about
the Bitcoin miners’ incentives.

• Deriving predictions that match the observable.

Blockchains

 Securely implementing a task against
an incentive-driven adversary

Rational Protocol Design (RPD) [GKMTZ13]

 Securely implementing a task against
an incentive-driven adversary

(n-party) task as an
ideal functionality FProtocol

Designer
uD

Protocol
Attacker

uA

The Attack Game

Rational Protocol Design (RPD) [GKMTZ13]

 Securely implementing a task against
an incentive-driven adversary

(n-party) task as an
ideal functionality FProtocol

Designer
uD

Protocol
Attacker

uA

The Attack Game

(n-party)
protocol π for F

Rational Protocol Design (RPD) [GKMTZ13]

 Securely implementing a task against
an incentive-driven adversary

Adversary A for
attacking π

(n-party) task as an
ideal functionality FProtocol

Designer
uD

Protocol
Attacker

uA

The Attack Game

(n-party)
protocol π for F

Rational Protocol Design (RPD) [GKMTZ13]

 Securely implementing a task against
an incentive-driven adversary

Adversary A for
attacking π

• Utilities are defined in the ideal world as payoffs of
explicit “breaks” of F

• zero-sum game (i.e., uD := - uA)

(n-party) task as an
ideal functionality FProtocol

Designer
uD

Protocol
Attacker

uA

The Attack Game

(n-party)
protocol π for F

Rational Protocol Design (RPD) [GKMTZ13]

Rational Protocol Design (RPD) [GKMTZ13]
Flavors of Protocol Quality (security / stability)
• π is (uD, uA, ℿ)-attack-payoff optimal for F if any other protocol

in ℿ allows for more rewarding attacks

• π is a best-response strategy among protocols in ℿ

• π is (uD, uA, 𝔸)-attack-payoff secure for F if the best the attacker
can do is play an adversary in 𝔸
• an 𝔸-adversary is best response to π

In [GKMTZ13]:
✴ ℿ = The class of all poly-time protocols
✴ 𝔸 = The class of all adversaries that honestly execute the protocol

Rational Protocol Design (RPD) [GKMTZ13]
Flavors of Protocol Quality (security / stability)
• π is (uD, uA, ℿ)-attack-payoff optimal for F if any other protocol

in ℿ allows for more rewarding attacks

• π is a best-response strategy among protocols in ℿ

• π is (uD, uA, 𝔸)-attack-payoff secure for F if the best the attacker
can do is play an adversary in 𝔸
• an 𝔸-adversary is best response to π

Flavors of Protocol Quality (security / stability)
• π is (uD, uA, ℿ)-attack-payoff optimal for F if any other protocol

in ℿ allows for more rewarding attacks

• π is a best-response strategy among protocols in ℿ

• π is (uD, uA, 𝔸)-attack-payoff secure for F if the best the attacker
can do is play an adversary in 𝔸
• an 𝔸-adversary is best response to π

Rational Protocol Design (RPD)++

Flavors of Protocol Quality (security / stability)
• π is (uD, uA, ℿ)-attack-payoff optimal for F if any other protocol

in ℿ allows for more rewarding attacks

• π is a best-response strategy among protocols in ℿ

• π is (uD, uA, (𝔸, ℿ))-incentive compatible for F if it is (uD, uA, 𝔸)-
attack-payoff secure AND (uD, uA, ℿ)-attack-payoff optimal

• π is (uD, uA, 𝔸)-attack-payoff secure for F if the best the attacker
can do is play an adversary in 𝔸
• an 𝔸-adversary is best response to π

Rational Protocol Design (RPD)++

Flavors of Protocol Quality (security / stability)
• π is (uD, uA, ℿ)-attack-payoff optimal for F if any other protocol

in ℿ allows for more rewarding attacks

• π is a best-response strategy among protocols in ℿ

For Bitcoin
✴ ℿ = The class of protocols that use the Bitcoin infrastructure

(circulate blocks and transactions of the right format)
✴ 𝔸 = The class of semi-honest network-rushing adversaries

➡ strongly (uD, uA)-attack-payoff secure

• π is (uD, uA, 𝔸)-attack-payoff secure for F if the best the attacker
can do is play an adversary in 𝔸
• an 𝔸-adversary is best response to π

Bitcoin in RPD++

• π is (uD, uA, (𝔸, ℿ))-incentive compatible for F if it is (uD, uA, 𝔸)-
attack-payoff secure AND (uD, uA, ℿ)-attack-payoff optimal

Bitcoin in RPD++

Protocol
Designer

uD

Protocol
Attacker

uA
(n-party)

protocol π for F

Adversary A for
attacking π

• Utilities are defined in the ideal world as payoffs of explicit
“breaks” of F

• zero-sum game (i.e., uD := - uA)

22

(n-party) task as an
ideal functionality F

The Bitcoin Attack Game

1

Bitcoin in RPD++

Protocol
Designer

uD

Protocol
Attacker

uA
(n-party)

protocol π for F

Adversary A for
attacking π

• Utilities are defined in the ideal world as payoffs of explicit
“breaks” of F

• zero-sum game (i.e., uD := - uA)

22

(n-party) task as an
ideal functionality F

The Bitcoin Attack Game

1

Buffer

Bitcoin an a Transaction Ledger [BMTZ17]

Gledger

B0 B1 B3 … Bs

State

tx1

tx2

tx3

tx4

txl

Buffer

Bitcoin an a Transaction Ledger [BMTZ17]

GetState

(sufficiently long
prefix of) B1,…,BS

Gledger

B0 B1 B3 … Bs

State

tx1

tx2

tx3

tx4

txl

Buffer

Bitcoin an a Transaction Ledger [BMTZ17]

GetState

(sufficiently long
prefix of) B1,…,BS

(Submit, tx)

Gledger

B0 B1 B3 … Bs

State

tx1

tx2

tx3

tx4

txl

Buffer

Bitcoin an a Transaction Ledger [BMTZ17]

GetState

(sufficiently long
prefix of) B1,…,BS

(Submit, tx)

Gledger

B0 B1 B3 … Bs

State

tx1

tx2

tx3

tx4

txl
tx

Validate(.)

Buffer

Bitcoin an a Transaction Ledger [BMTZ17]

GetState

(sufficiently long
prefix of) B1,…,BS

(Submit, tx)

Gledger

B0 B1 B3 … Bs

State

tx1

tx2

tx3

tx4

txl
tx

Validate(.)

Buffer

Bitcoin an a Transaction Ledger [BMTZ17]

GetState

(sufficiently long
prefix of) B1,…,BS

(Submit, tx)

Gledger

B0 B1 B3 … Bs

State

tx1

tx2

tx3

tx4

txl

tx

tx
Validate(.)tx

Bitcoin an a Transaction Ledger [BMTZ17]

GetState Validate(.)

No

Gledger

B0 B1 B3 … Bs

State

Buffer
tx1

tx2

tx3

tx4

txltx

(sufficiently long
prefix of) B1,…,BS

Bitcoin an a Transaction Ledger [BMTZ17]

GetState Validate(.)

No

Gledger

B0 B1 B3 … Bs

State

Buffer
tx1

tx2

tx3

tx4

txltx

Next
Block
tx1,tx3

(sufficiently long
prefix of) B1,…,BS

Bitcoin an a Transaction Ledger [BMTZ17]

GetState Validate(.)

No

Gledger

B0 B1 B3 … Bs

State

Buffer
time?

t

tx1

tx2

tx3

tx4

txltx

Next
Block
tx1,tx3

(sufficiently long
prefix of) B1,…,BS

Bitcoin an a Transaction Ledger [BMTZ17]

GetState Validate(.)

No

Gledger

B0 B1 B3 … Bs

State

Buffer
time?

t

tx1

tx2

tx3

tx4

txl

Extend Policy

tx

Next
Block
tx1,tx3

(sufficiently long
prefix of) B1,…,BS

Bitcoin an a Transaction Ledger [BMTZ17]

GetState Validate(.)

No

Gledger

B0 B1 B3 … Bs

State

Buffer
time?

t

tx1

tx2

tx3

tx4

txl

Extend Policy

tx

Next
Block
tx1,tx3

• chain growth, chain quality,…
[GKL15,PSS17]

(sufficiently long
prefix of) B1,…,BS

Bitcoin an a Transaction Ledger [BMTZ17]

GetState Validate(.)

No

Gledger

B0 B1 B3 … Bs

State

Buffer
time?

t

tx1

tx2

tx3

tx4

txl

Extend Policy

tx

Next
Block
tx1,tx3

• chain growth, chain quality,…
[GKL15,PSS17]

(sufficiently long
prefix of) B1,…,BS

Bitcoin an a Transaction Ledger [BMTZ17]

GetState Validate(.)

No

Gledger

B0 B1 B3 … Bs

State

Buffer
time?

t

tx1

tx2

tx3

tx4

txl

Extend Policy

Blockify

tx

Next
Block
tx1,tx3

• chain growth, chain quality,…
[GKL15,PSS17]

(sufficiently long
prefix of) B1,…,BS

Bitcoin an a Transaction Ledger [BMTZ17]

GetState Validate(.)

No

Gledger

B0 B1 B3 … Bs

State

Buffer
time?

t

tx1

tx2

tx3

tx4

txl

Extend Policy

Blockify Bs+1

tx

Next
Block
tx1,tx3

• chain growth, chain quality,…
[GKL15,PSS17]

(sufficiently long
prefix of) B1,…,BS

Bitcoin an a Transaction Ledger [BMTZ17]

GetState Validate(.)

No

Gledger

B0 B1 B3 … Bs

State

Buffer
time?

t

tx2

tx1 tx3

tx4

txl

tx

Extend Policy

Blockify Bs+1

tx

Next
Block
tx1,tx3

(sufficiently long
prefix of) B1,…,BS

Bitcoin an a Transaction Ledger [BMTZ17]

GetState Validate(.)

No

Gledger

B0 B1 B3 … Bs

State

Buffer
time?

t

tx2

tx1 tx3

tx4

txl

tx

Extend Policy

Blockify Bs+1

tx

Next
Block
tx1,tx3

(sufficiently long
prefix of) B1,…,BS

Bitcoin an a Transaction Ledger [BMTZ17]

GetState Validate(.)

No

Gledger

B0 B1 B3 … Bs

State

Buffer
time?

t

tx2

tx1 tx3

tx4

txl

tx

Extend Policy

Blockify

Bs+1
tx

Next
Block
tx1,tx3

(sufficiently long
prefix of) B1,…,BS

Bitcoin an a Transaction Ledger [BMTZ17]

GetState Validate(.)

No

Gledger

B0 B1 B3 … Bs

State

Buffer
time?

t

tx2

tx1 tx3

tx4

txl

tx

Extend Policy

Blockify

Bs+1
tx

Next
Block
tx1,tx3

(sufficiently long
prefix of) B1,…,BS

Bitcoin an a Transaction Ledger [BMTZ17]

GetState Validate(.)

No

Gledger

B0 B1 B3 … Bs

State

Buffer
time?

t

tx2

tx4

txl

tx

Extend Policy

Blockify

Bs+1
tx

Next
Block
tx1,tx3

(sufficiently long
prefix of) B1,…,BS

Bitcoin an a Transaction Ledger [BMTZ17]

GetState Validate(.)

No

Gledger

B0 B1 B3 … Bs

State

Buffer
time?

t

tx2

tx4

txl

tx

Extend Policy

Blockify

Bs+1
tx

Next
Block
tx1,tx3

Bitcoin UC implements such a
ledger against corrupted

minority [BMTZ17]

(sufficiently long
prefix of) B1,…,BS

Bitcoin in RPD++

Protocol
Designer

uD

Protocol
Attacker

uA
(n-party)

protocol π for F

Adversary A for
attacking π

• Utilities are defined in the ideal world as payoffs of explicit
“breaks” of F

• zero-sum game (i.e., uD := - uA)

22

(n-party) task as an
ideal functionality F

FLedger

The Bitcoin Attack Game

1

Bitcoin in RPD++

Protocol
Designer

uD

Protocol
Attacker

uA
(n-party)

protocol π for F

Adversary A for
attacking π

• Utilities are defined in the ideal world as payoffs of explicit
“breaks” of F

• zero-sum game (i.e., uD := - uA)

22

(n-party) task as an
ideal functionality F

FLedger

The Bitcoin Attack Game

1

Bitcoin in RPD++

Protocol
Designer

uD

Protocol
Attacker

uA
(n-party)

protocol π for F

Adversary A for
attacking π

• Utilities are defined in the ideal world as payoffs of explicit
“breaks” of F

• zero-sum game (i.e., uD := - uA)

22

(n-party) task as an
ideal functionality F

FLedger

The Bitcoin Attack Game

1

Our Contributions

• A new model for rational analysis of Bitcoin

• Applying the framework to analyze the Bitcoin backbone

• A class of utilities reflecting “minimal” assumptions about
the Bitcoin miners’ incentives.

• Deriving predictions that match the observable.

Blockchains

The Utilities
Parameters

Block Reward
BR (Unit : BTC)

Hashing Cost
HC (Unit : KWh)

Transaction Fees
TF (Unit : BTC)

(+) (+) (-)

Utility = expected rewards - expected costs

The Utilities
Parameters

Block Reward
BR (Unit : BTC)

Hashing Cost
HC (Unit : KWh)

Transaction Fees
TF (Unit : BTC)

(+) (+) (-)

1KWh = CR BTC

Utility = expected rewards - expected costs

The Utilities
Parameters

Block Reward
BR (Unit : BTC)

Hashing Cost
HC (Unit : KWh)

Transaction Fees
TF (Unit : BTC)

(+) (+) (-)

1KWh = CR BTC

Utility = expected rewards - expected costs

The Utilities
Parameters

Block Reward
BR (Unit : BTC)

Hashing Cost
HC (Unit : KWh)

Transaction Fees
TF (Unit : BTC)

(+) (+) (-)

1KWh = CR BTC

The attacker’s (expected) utility : Wants to make profit

• For each block a corrupted inserts into the state: (BR + TF) BTCs

• For each hash query a corrupted makes: - (HC x CR) BTCs

uB
A

Utility = expected rewards - expected costs

The Utilities
Parameters

Block Reward
BR (Unit : BTC)

Hashing Cost
HC (Unit : KWh)

Transaction Fees
TF (Unit : BTC)

(+) (+) (-)

1KWh = CR BTC

Can be defined in the ideal experiment
(explicit in the functionality)

The attacker’s (expected) utility : Wants to make profit

• For each block a corrupted inserts into the state: (BR + TF) BTCs

• For each hash query a corrupted makes: - (HC x CR) BTCs

uB
A

Utility = expected rewards - expected costs

The Utilities
Parameters

Block Reward
BR (Unit : BTC)

Hashing Cost
HC (Unit : KWh)

Transaction Fees
TF (Unit : BTC)

(+) (+) (-)

The designer’s (expected) utility : Wants to preserve
consensus and make profit while doing so
• For each block an honest inserts into the state: (BR + TF) BTCs

• For each hash query an honest makes: - (HC x CR) BTCs

uB
D

• If the state (permanent part) of the ledger forks then - exp BTCs

1KWh = CR BTC

Utility = expected rewards - expected costs

Bitcoin in RPD++

Advantages over standard rational analysis
• Simpler (Stackelberg) game to analyze

• 2-party 2-move metagame among unbounded agents

• Most Bitcoin miners will not cheat and will follow the
protocol if it is profitable for them

• Utilities are defined in the cleaner ideal world

• Can define them based on the fixed ledger state rather
than local views of parties

• Automatic composition with crypto [GKMTZ13]

• Easily captures adaptive corruption

• Example: bribery attacks [Bon16]

Our Contributions

• A new model for rational analysis of Bitcoin

• Applying the framework to analyze the Bitcoin backbone

• A class of utilities reflecting “minimal” assumptions about
the Bitcoin miners’ incentives.

• Deriving predictions that match the observable.

Blockchains

Stability/Security: No Transaction Fees (TF=0)

Bitcoin is strongly -attack-payoff secure for FLedger(uB
D, uB

A)

Stability/Security: No Transaction Fees (TF=0)

Bitcoin is strongly -attack-payoff secure for FLedger

Recall: This is the semi-honest network-rushing adversary

(uB
D, uB

A)

Stability/Security: No Transaction Fees (TF=0)

Bitcoin is strongly -attack-payoff secure for FLedger

Recall: This is the semi-honest network-rushing adversary

Proof Idea:

• The adversary controls the network

• Any non-network related attack involves hashing
• If the finds a solution to the puzzle he is better off

pushing it to the network

• Otherwise, the hash is useless (and costly)

(uB
D, uB

A)

Stability/Security: No Transaction Fees (TF=0)

Bitcoin is strongly -attack-payoff secure for FLedger

Recall: This is the semi-honest network-rushing adversary

Proof Idea:

• The adversary controls the network

• Any non-network related attack involves hashing
• If the finds a solution to the puzzle he is better off

pushing it to the network

• Otherwise, the hash is useless (and costly)

(uB
D, uB

A)

Fixed
difficulty

Stability/Security: No Transaction Fees (TF=0)

Bitcoin is -incentive-compatible for FLedger(uB
D, uB

A, (A, ⇧))
if and only if CR is "high enough”

(uB
D, uB

A

Stability/Security: No Transaction Fees (TF=0)

Bitcoin is -incentive-compatible for FLedger(uB
D, uB

A, (A, ⇧))
if and only if CR is "high enough”

BR · CR > HC · 1
p · (1 ≠ p)n≠1BR · CR <

HC

p

* p = Probability of finding a valid block in 1 hash query

(uB
D, uB

A

Stability/Security: No Transaction Fees (TF=0)

Bitcoin is -incentive-compatible for FLedger(uB
D, uB

A, (A, ⇧))
if and only if CR is "high enough”

Proof Idea:
On expectation, the cost of mining till you find a block
is more than the profit (even if the block would make it)

BR · CR > HC · 1
p · (1 ≠ p)n≠1BR · CR <

HC

p

* p = Probability of finding a valid block in 1 hash query

(uB
D, uB

A

Stability/Security: No Transaction Fees (TF=0)

Proof Idea:
On expectation, the cost of mining till you are the only
one that finds a block is less than the profit.

BR · CR > HC · 1
p · (1 ≠ p)n≠1BR · CR <

HC

p

* p = Probability of finding a valid block in 1 hash query

Bitcoin is -incentive-compatible for FLedger(uB
D, uB

A, (A, ⇧))
if and only if CR is "high enough”

(uB
D, uB

A

Stability/Security: With Transaction Fees

Bitcoin is -incentive-compatible for FLedger(uB
D, uB

A, (A, ⇧))
if CR is "high enough” and …

(uB
D, uB

A

Stability/Security: With Transaction Fees

Bitcoin is -incentive-compatible for FLedger(uB
D, uB

A, (A, ⇧))
if CR is "high enough” and …

• no incentive to circulate high-fee transactions
to the network

(uB
D, uB

A

Stability/Security: With Transaction Fees

Bitcoin is -incentive-compatible for FLedger(uB
D, uB

A, (A, ⇧))
if CR is "high enough” and …

• no incentive to circulate high-fee transactions
to the network

(uB
D, uB

A

• there is an upper bound on total fees
• all parties get enough transactions to

reach this bound

Stability/Security: With Transaction Fees

Bitcoin is -incentive-compatible for FLedger(uB
D, uB

A, (A, ⇧))
if CR is "high enough” and …

• no incentive to circulate high-fee transactions
to the network

(uB
D, uB

A

• there is an upper bound on total fees
• all parties get enough transactions to

reach this bound

Proposal for
when rewards
approach zero

Conclusions
Our Results

• Simple and Crypto-compatible rational model for blockchains

• Rational treatment of the Bitcoin backbone with fixed difficulty
under natural minimal utilities

• The effect of exchange on stability/security

• Proposal for coping with diminishing rewards

• Also in the paper: Rationality as a fallback to honest majority

Conclusions
Our Results

• Simple and Crypto-compatible rational model for blockchains

• Rational treatment of the Bitcoin backbone with fixed difficulty
under natural minimal utilities

• The effect of exchange on stability/security

• Proposal for coping with diminishing rewards

• Also in the paper: Rationality as a fallback to honest majority
Future Directions

• Variable difficulty

• Utilities capturing other factors might affect the decision:

• Detection of a 50% attack might be a deterrence
• Mining pools’ incentives

• A rational analysis of Bitcoin as cryptocurrency

• The contents of transactions might affect the utilities…

Conclusions
Our Results

• Simple and Crypto-compatible rational model for blockchains

• Rational treatment of the Bitcoin backbone with fixed difficulty
under natural minimal utilities

• The effect of exchange on stability/security

• Proposal for coping with diminishing rewards

• Also in the paper: Rationality as a fallback to honest majority
Future Directions

• Variable difficulty

• Utilities capturing other factors might affect the decision:

• Detection of a 50% attack might be a deterrence
• Mining pools’ incentives

• A rational analysis of Bitcoin as cryptocurrency

• The contents of transactions might affect the utilities…

Thank you!

