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been observed!  

2008/09 White Paper & Genesis
And Nakamoto said:    
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It doesn’t! Not an equilibrium. 
Just a temporary anomaly.  

but … why … ? 

Because the majority of computing 
power is controlled by honest miners

In game-theoretic analysis  
• Utilities = assumptions to 

explain/predict players behavior
• If predictions ≠ observable then 

utilities (and game?) can 
(should?) be rethought.

Can we back this up by a rational 
assumption?
• Because the adversary has no 

incentive to break it (either by 
corrupting majority or otherwise)

Why don’t the predicted attacks 
occur and entirely break it?

Calls for an alternative rational treatment

Nostradamus
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• π  is  (uD, uA, ℿ)-attack-payoff optimal for F if any other protocol  

in ℿ  allows for more rewarding attacks

• π is a best-response strategy among protocols in ℿ

For Bitcoin
✴ ℿ = The class of protocols that use the Bitcoin infrastructure 

(circulate blocks and transactions of the right format)
✴ 𝔸 = The class of semi-honest network-rushing adversaries 

➡  strongly (uD, uA)-attack-payoff secure  
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The Utilities
Parameters

Block Reward
BR (Unit : BTC)

Hashing Cost
HC (Unit : KWh)

Transaction Fees
TF (Unit : BTC)

(+) (+) (-)

The designer’s (expected) utility         : Wants to preserve 
consensus and make profit while doing so
• For each block an honest inserts into the state: (BR + TF)  BTCs

• For each hash query an honest makes: - (HC x CR)  BTCs

uB
D

• If the state (permanent part) of the ledger forks then  - exp BTCs

1KWh = CR BTC

Utility = expected rewards - expected costs



Bitcoin in RPD++

Advantages over standard rational analysis
• Simpler (Stackelberg) game to analyze

• 2-party 2-move metagame among unbounded agents 

• Most Bitcoin miners will not cheat and will follow the 
protocol if it is profitable for them

• Utilities are defined in the cleaner ideal world 

• Can define them based on the fixed ledger state rather 
than local views of parties

• Automatic composition with crypto [GKMTZ13]

• Easily captures adaptive corruption 

• Example: bribery attacks [Bon16]
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• A class of utilities reflecting “minimal” assumptions about 
the Bitcoin miners’ incentives.

• Deriving predictions that match the observable.  
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Stability/Security: No Transaction Fees (TF=0)

Proof Idea:
On expectation, the cost of mining till you are the only 
one that finds a block is less than the profit. 
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Bitcoin is -incentive-compatible for FLedger(uB
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if CR is "high enough” and  … 

• no incentive to circulate high-fee transactions 
to the network

(uB
D, uB

A

• there is an upper bound on total fees
• all parties get enough transactions to 

reach this bound

Proposal for 
when rewards 
approach zero
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Future Directions 

• Variable difficulty 
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