Non-malleable Randomness Encoders and their Applications

Bhavana Kanukurthi Sai Lakshmi Bhavana Obbattu Sruthi Sekar

Indian Institute of Science, Bangalore

3rd May 2018

Correctness

• Correctness: $\forall m$, $\Pr[Dec(Enc(m)) = m] = 1$

- Correctness: $\forall m$, $\Pr[Dec(Enc(m)) = m] = 1$
- Non-malleability:

- Correctness: $\forall m$, $\Pr[Dec(Enc(m)) = m] = 1$
- Non-malleability:

m'is independent of m

- Correctness: $\forall m$, $\Pr[Dec(Enc(m)) = m] = 1$
- Non-malleability:

m'is independent of m

- Correctness: $\forall m$, $\Pr[Dec(Enc(m)) = m] = 1$
- Non-malleability:

- Correctness: $\forall m$, $\Pr[Dec(Enc(m)) = m] = 1$
- Non-malleability:

- Correctness: $\forall m$, $\Pr[Dec(Enc(m)) = m] = 1$
- Non-malleability:

- Correctness: $\forall m$, $\Pr[Dec(Enc(m)) = m] = 1$
- Non-malleability:

m'is independent of m

- Correctness: $\forall m$, $\Pr[Dec(Enc(m)) = m] = 1$
- Non-malleability:

m'is independent of m

- Correctness: $\forall m$, $\Pr[Dec(Enc(m)) = m] = 1$
- Non-malleability:

• Non-malleability:

$$m \longrightarrow \boxed{Enc} \longrightarrow c \xrightarrow{f \in \mathcal{F}} c' \longrightarrow \boxed{Dec} \longrightarrow m'$$

• Non-malleability:

$$m \longrightarrow \fbox{Enc} \longrightarrow c \xrightarrow{f \in \mathcal{F}} c' \longrightarrow \fbox{Dec} \longrightarrow m'$$

(Enc, Dec) is ϵ -non-malleable with respect to \mathcal{F} if

• Non-malleability:

$$m \longrightarrow \boxed{Enc} \longrightarrow c \xrightarrow{f \in \mathcal{F}} c' \longrightarrow \boxed{Dec} \longrightarrow m'$$

(Enc, Dec) is ϵ -non-malleable with respect to \mathcal{F} if

$$\forall m, Tamper_{f}^{m} \approx_{\epsilon} Sim_{f}$$

$$m' := Dec(f(Enc(m)))$$

$$O/P: m'$$

$$O/P: m'$$

• Non-malleability:

$$m \longrightarrow \boxed{Enc} \longrightarrow c \xrightarrow{f \in \mathcal{F}} c' \longrightarrow \boxed{Dec} \longrightarrow m'$$

(Enc, Dec) is ϵ -non-malleable with respect to \mathcal{F} if

$$\forall m, Tamper_f^m \approx_{\epsilon} Sim_f$$

$$m' := Dec(f(Enc(m)))$$

$$O/P: m'$$

$$O/P: m'$$

• Non-malleability:

$$m \longrightarrow \fbox{Enc} \longrightarrow c \xrightarrow{f \in \mathcal{F}} c' \longrightarrow \fbox{Dec} \longrightarrow m'$$

(Enc, Dec) is ϵ -non-malleable with respect to \mathcal{F} if

 $\forall f \in \mathcal{F}, \exists Sim_f \text{ such that }$

$$\forall m, Tamper_f^m \approx_{\epsilon} Sim_f$$

$$m' := Dec(f(Enc(m)))$$

$$O/P: m'$$

$$O/P: m'$$

• Non-malleability:

$$m \longrightarrow \fbox{Enc} \longrightarrow c \xrightarrow{f \in \mathcal{F}} c' \longrightarrow \fbox{Dec} \longrightarrow m'$$

(Enc, Dec) is ϵ -non-malleable with respect to \mathcal{F} if

 $\forall f \in \mathcal{F}, \exists Sim_f \text{ such that }$

$$\forall m, Tamper_f^m \approx_{\epsilon} Sim_f$$

$$m' := Dec(f(Enc(m)))$$

$$O/P: m'$$

$$O/P: m'$$

• Non-malleability:

$$m \longrightarrow \boxed{Enc} \longrightarrow c \xrightarrow{f \in \mathcal{F}} c' \longrightarrow \boxed{Dec} \longrightarrow m'$$

(Enc, Dec) is ϵ -non-malleable with respect to \mathcal{F} if

 $\forall f \in \mathcal{F}, \exists Sim_f \text{ such that }$

$$\forall m, Tamper_f^m \approx_{\epsilon} Sim_f$$

$$m' := Dec(f(Enc(m)))$$

$$O/P: m'$$

$$O/P: m'$$

Digital Signature Scheme

• <u>Standard security</u>: Given oracle access to "Sign", adversary can't forge signature on a new message.

- <u>Standard security</u>: Given oracle access to "Sign", adversary can't forge signature on a new message.
- But what if adversary tampers the device and modifies *k*?

- <u>Standard security</u>: Given oracle access to "Sign", adversary can't forge signature on a new message.
- But what if adversary tampers the device and modifies *k*?
- Adversary sees a signature on a related key.

- <u>Standard security</u>: Given oracle access to "Sign", adversary can't forge signature on a new message.
- But what if adversary tampers the device and modifies *k*?
- Adversary sees a signature on a related key.
- Security of signature scheme not guaranteed!

Digital Signature Scheme

- <u>Standard security</u>: Given oracle access to "Sign", adversary can't forge signature on a new message.
- But what if adversary tampers the device and modifies *k*?
- Adversary sees a signature on a related key.
- Security of signature scheme not guaranteed!

How to get security against this?

Digital Signature Scheme

- <u>Standard security</u>: Given oracle access to "Sign", adversary can't forge signature on a new message.
- But what if adversary tampers the device and modifies *k*?
- Adversary sees a signature on a related key.
- Security of signature scheme not guaranteed!

How to get security against this? Non-malleable codes

• Tampering family:

• Tampering family:

• **Tampering family**: Commonly studied tampering family is the *t-split-state family*:

 $\mathcal{F}_t = \{(f_1, \cdots, f_t) : f_i : \{0, 1\}^{n/t} \to \{0, 1\}^{n/t} \text{ for each } i\}$

• Tampering family:

Lower the value of $t \rightarrow$ More powerful Adversary

• Tampering family:

• Rate: $\frac{\text{More powerful Adversary}}{\text{codeword length}}$

• Tampering family:

Lower the value of $t \rightarrow$ More powerful Adversary

Higher rate \rightarrow Lower redundancy

• Tampering family:

Lower the value of $t \rightarrow$ More powerful Adversary

• **Rate**: Higher rate \rightarrow Lower redundancy

Holy Grail: Build **optimal rate** NMCs for \mathcal{F}_2

Optimal Achievable Rates [Cheraghchi and Guruswami ITCS 2014]

~		- C - L	
Smith	th	50	12.31
SIL		50	nα

~		~	
Smit	thi	80	20
Siu	սու	50	

• No constant rate NMCs for t < 4.

- No constant rate NMCs for t < 4.
- NMCs give strong guarantee of non-malleability for every message.

- No constant rate NMCs for t < 4.
- NMCs give strong guarantee of non-malleability for every message.

Question: Can we do better for random messages?

- No constant rate NMCs for t < 4.
- NMCs give strong guarantee of non-malleability for every message. Question: Can we do better for random messages?

This work: Non-malleable Randomness Encoders (NMREs)

- No constant rate NMCs for t < 4.
- NMCs give strong guarantee of non-malleability for every message.

Question: Can we do better for random messages?

This work: 2-state, 1/2-rate NMRE

• A random message k is generated

- A *random message k* is generated along with its corresponding *non-malleable encoding c*.
- Informal definition: If c is tampered by $f \in \mathcal{F}$ to c', then

- A *random message k* is generated along with its corresponding *non-malleable encoding c*.
- Informal definition: If c is tampered by $f \in \mathcal{F}$ to c', then
 - either k' = k

- A *random message k* is generated along with its corresponding *non-malleable encoding c*.
- Informal definition: If c is tampered by $f \in \mathcal{F}$ to c', then
 - either k' = k
 - or k looks uniform, even given k'.

- A *random message k* is generated along with its corresponding *non-malleable encoding c*.
- Informal definition: If c is tampered by $f \in \mathcal{F}$ to c', then
 - either k' = k
 - or k looks uniform, even given k'.
- Any NMC is by default a secure NMRE.

- Building blocks
- Motivating the construction
- Our construction
- Security proof

Randomness Extractors: Nissan and Zuckerman

Converts non-uniform source string to a uniform string

 $S, \mathsf{Ext}(W; S) \approx S, U$

A Non-malleable code (NMEnc, NMDec) w.r.t. to \mathcal{F}_2 $\xrightarrow{m \longrightarrow R} \xrightarrow{L} \xrightarrow{L} \xrightarrow{R} \xrightarrow{M \longrightarrow R} \xrightarrow{$

• Can be any 2-state NMC. Specific instantiation: [Li17] A Non-malleable code (NMEnc, NMDec) w.r.t. to \mathcal{F}_2 $\xrightarrow{m \longrightarrow R} \qquad \stackrel{L}{\longrightarrow} \stackrel{L}{\longrightarrow} \qquad \stackrel{M \longrightarrow Dec}{\longrightarrow} m$

- Can be any 2-state NMC. Specific instantiation: [Li17]
- Used to encode short messages only

Motivating our construction

Motivating our construction

Motivating our construction

<u>Goal</u>: Build a simulator $\text{NMRSim}_{f,g}$, similar to NMCs. NMRSim $_{f,g}$

To do this, we use the simulator for NMC, NMSim in black box. NMRSim $_{f,g}$

$$\mathsf{NMSim}_{f_w,g} o || ilde{k_a}|| ilde{t}|| ilde{s}|$$

• Introduced NMREs as an alternative for non-malleable encoding of random messages.

- Introduced NMREs as an alternative for non-malleable encoding of random messages.
- Built 2-state 1/2-rate NMRE.

- Introduced NMREs as an alternative for non-malleable encoding of random messages.
- Built 2-state 1/2-rate NMRE.
- Built 3-state 1/3-rate NMC.

- Introduced NMREs as an alternative for non-malleable encoding of random messages.
- Built 2-state 1/2-rate NMRE.
- Built 3-state 1/3-rate NMC.

Open problems:

- Introduced NMREs as an alternative for non-malleable encoding of random messages.
- Built 2-state 1/2-rate NMRE.
- Built 3-state 1/3-rate NMC.

Open problems:

• Is 1/2 the optimal achievable rate for 2-state NMRE?

- Introduced NMREs as an alternative for non-malleable encoding of random messages.
- Built 2-state 1/2-rate NMRE.
- Built 3-state 1/3-rate NMC.

Open problems:

- Is 1/2 the optimal achievable rate for 2-state NMRE?
- Other applications of NMREs

Holy Grail for PA: Build 2-round protocol with entropy loss $\Theta(\lambda)$ and requiring a min-entropy of $\mathcal{O}(\lambda + \log n)$

Holy Grail for PA: Build 2-round protocol with entropy loss $\Theta(\lambda)$ and requiring a min-entropy of $\mathcal{O}(\lambda + \log n)$

<u>Our Result</u>: An "augmented" 2-state constant rate NMRE with optimal error \implies 8-round PA protocol with optimal entropy loss and min-entropy requirement.

Holy Grail for PA: Build 2-round protocol with entropy loss $\Theta(\lambda)$ and requiring a min-entropy of $\mathcal{O}(\lambda + \log n)$

<u>Our Result</u>: An "augmented" 2-state constant rate NMRE with optimal error \implies 8-round PA protocol with optimal entropy loss and min-entropy requirement.

(Joint work with: Eshan Chattopadhyay, Bhavana Kanukurthi, Sai Lakshmi Bhavana Obbattu) (https://eprint.iacr.org/2018/293)

THANK YOU!!