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How quantum computers will undermine cryptography

eryptographic algorithms that underpin the World Wide Web, according to a
former NSA technical director

Quantum computing has many benefits, but it could also undermine the ‘
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Isogeny Problems

» Recently proposed for post-quantum cryptography
» Natural problems from a number theory point of view

» Classical and quantum algorithms still exponential time
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Recently proposed for post-quantum cryptography
Natural problems from a number theory point of view
Classical and quantum algorithms still exponential time

But still rather new, need further study

Our results :

» Efficient reductions between three hard problem variants
» Efficient solutions for two (other) problems
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Isogenies and related problems
Motivation : Charles-Goren-Lauter hash function

New results and techniques
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Supersingular curves and isogenies

» Let p be a prime. Up to isomorphism, any supersingular
elliptic curve is defined over [F .

» An isogeny from a curve Ej is a non trivial morphism
¢ : Ey — E; sending 0 to 0
» In Weierstrass affine coordinates we can write
p(x)  w(x y) )
V2(x,y) V3 (x,y)

» Isogeny degree is deg ¢ = max{deg o, deg 1%}

¢1E1—>E23¢(X7}’):(

» An endomorphism of E is an isogeny ¢ : E — E
(examples : scalar multiplications, Frobenius)
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» Isogeny problems with potential interest for cryptography
are about “computing” isogenies between two curves, or
some variant of this problem
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Isogeny problems

Isogeny problems with potential interest for cryptography
are about “computing” isogenies between two curves, or
some variant of this problem
» A bit tricky to define : degree must be large for security,
but then natural output representation is not efficient

Endomorphism computation case : hard in general but

» Easy for special curves
» Scalar multiplications and Frobenius known trivially




Endomorphism rings

» The endomorphisms of a curve E have a ring structure,
operations are addition law on E and composition

» The endomorphism ring of a supersingular curve over F,
is @ maximal order in the quaternion algebra B,




Endomorphism rings

» The endomorphisms of a curve E have a ring structure,
operations are addition law on E and composition

» The endomorphism ring of a supersingular curve over F,
is @ maximal order in the quaternion algebra B,

» Deuring correspondence [D31] : bijection from
supersingular curves over F,» (up to Galois conjugacy)
to maximal orders in B, o, (up to conjugation)

E — O ~ End(E)




Isogeny graphs

» Over [F, the (-torsion E[¢] is isomorphic to Z; x Z,

» There are ¢ + 1 cyclic subgroups of order ¢; each one is
the kernel of a degree ¢ isogeny




Isogeny graphs

v

v

v

Over [F,, the (-torsion E[/] is isomorphic to Z; x Z;

There are ¢ + 1 cyclic subgroups of order ¢; each one is
the kernel of a degree ¢ isogeny

(-isogeny graph : each vertex is a j-invariant over IF‘,,,
each edge corresponds to one degree ¢ isogeny

Isogeny graphs are undirected




Isogeny graphs

Over [F,, the (-torsion E[/] is isomorphic to Z; x Z;

There are ¢ + 1 cyclic subgroups of order ¢; each one is
the kernel of a degree ¢ isogeny

(-isogeny graph : each vertex is a j-invariant over IF‘,,,
each edge corresponds to one degree ¢ isogeny

Isogeny graphs are undirected

In supersingular case all j and isogenies defined over [F .
and graphs are Ramanujan (optimal expansion graphs)

Isogeny problems ~ finding paths in these graphs
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Motivation : Charles-Goren-Lauter hash function




Charles-Goren-Lauter hash function

Hash of the Future? =

Have you ever struggled to solve a maze? Then imagine trying to finda ~ 71% ey
path through a tangled, three-dimensional maze as large as the Milky = (0
Way. By incorporating such a maze into a hash function, Kristin D o
Lauter of Microsoft Research in Redmond, Washington, is betting g ™
that neither you nor anyone else will solve that problem.
Technically, Lauter’s maze is called an “expander «
graph” (see figure, right). Nodes in the graph corre- o
spond to elliptic curves, or equations of the form y? = o )
X +ax+ b. Each curve leads to three other curves by L] L) >
a mathematical relation, now called isogeny, that )
Pierre de Fermat discovered while trying to prove
his famous Last Theorem. -
To hash a digital file using an expander L 2 2
graph, you would convert the bits of data s
into directions: 0 would mean “turn right,” 2 n ~
1 would mean “turn left.” In the maze (&
illustrated here, after the initial step 1-2, m S s
the blue path encodes the directions 1,0, 1, 1, 0, G
0,0, 0, 1, ending at point 24, which would be the
digital signature of the string 101100001. The red [
loop shows a collision of two paths, which would be (o A
practically impossible to find in the immense maze o
envisioned by Lauter. 2 5 2
Although her hash function (developed with colleagues o
Denis Charles and Eyal Goren) is provably secure, Lauter admits
that it is not yet fast enough to compete with iterative hash func- (2%, 1
tions. However, for applications in which speed is less of an issue—
for example, where the files to be hashed are relatively small—Lauter o
believes it might be a winner. -D.M. e C

B
www.sciencemag.org on March 13, 2008
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Strategy to break CGL hash function

» ldea
1.

. use Deuring's correspondence (E <+ O ~ End(E))
Translate collision and preimage resistance properties
from the elliptic curve setting to the quaternion setting
Break collision and preimage resistance for quaternions
Translate the attacks back to elliptic curve setting




Strategy to break CGL hash function

» Idea : use Deuring's correspondence (E <» O ~ End(E))

1. Translate collision and preimage resistance properties

from the elliptic curve setting to the quaternion setting
2. Break collision and preimage resistance for quaternions
3. Translate the attacks back to elliptic curve setting

» Steps 1 and 2 were solved in [KLPT14] : algorithms to
compute elements in a given ideal with a given norm
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Results in this paper

Polynomial time collision attack on CGL hash function
for “special” initial curves [PL17]

Constructive Deuring correspondence in one direction :
given a maximal order in B, ., can efficiently compute
the corresponding j-invariant [PL17]

Equivalence of hard problems [PL17]
» Constructive Deuring correspondence in other direction
» Endomorphism ring computation for random curves
» Collision and preimage resistance of CGL hash function
for random initial curves

Other approach for some of these reductions, using an
oracle for the action on (-torsion problem [EHM17]




Key tools

» Converting quaternion ideals to isogenies [W69]
Let Eg with known End(Ep) =~ Oy C Bp
Isogenies from Ey correspond to left ideals of Op
Correspondence computed by identifying kernels
Efficient for powersmooth norms/degrees

vV vV v v

» “Quaternion /-isogeny algorithm” [KLPT14,GPS17]
» Replace ideal by equivalent one with powersmooth norm




Remember : CGL hash function

Hash of the Future? =

Have you ever struggled to solve a maze? Then imagine trying to finda ~ 71% ey
path through a tangled, three-dimensional maze as large as the Milky = (0
Way. By incorporating such a maze into a hash function, Kristin D o
Lauter of Microsoft Research in Redmond, Washington, is betting g ™

that neither you nor anyone else will solve that problem.

Technically, Lauter’s maze is called an “expander «
graph” (see figure, right). Nodes in the graph corre- o
spond to elliptic curves, or equations of the form y? = o )
X +ax+ b. Each curve leads to three other curves by L] L) >
a mathematical relation, now called isogeny, that )
Pierre de Fermat discovered while trying to prove
his famous Last Theorem.

To hash a digital file using an expander L 2 2
graph, you would convert the bits of data s
into directions: 0 would mean “turn right,” 2 n ~
1 would mean “turn left.” In the maze (&
illustrated here, after the initial step 1-2, m S s
the blue path encodes the directions 1,0, 1, 1, 0, G
0,0, 0, 1, ending at point 24, which would be the
digital signature of the string 101100001. The red [
loop shows a collision of two paths, which would be (o A
practically impossible to find in the immense maze o
envisioned by Lauter. 2 5 2

Although her hash function (developed with colleagues o
Denis Charles and Eyal Goren) is provably secure, Lauter admits
that it is not yet fast enough to compete with iterative hash func- (2%, 1
tions. However, for applications in which speed is less of an issue—
for example, where the files to be hashed are relatively small—Lauter
believes it might be a winner. -D.M. e C

B
www.sciencemag.org on March 13, 2008

16

uvERSITYor
BIRMINGHAM




Partial attack on CGL hash function

» Suppose CGL hash function uses a special curve E

» Goal : compute an endomorphism of Ey of degree /¢
(this gives a collision with the void message)
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Partial attack on CGL hash function

Suppose CGL hash function uses a special curve E

Goal : compute an endomorphism of Ey of degree (¢
(this gives a collision with the void message)

Compute o € Oy ~ End(Eyp) of norm ¢¢ (as in [KLPT14])
Deduce a collision path in the quaternion setting

i =00l + Ogex, i=1,...,e, where n(l;) =/

For each i

» Compute J; = [; with powersmooth norm
» Compute corresponding isogeny p; : Eg — E;

Deduce a collision path (Eg, E1, ..., E. = Ep)

17



Remember : CGL hash function

Hash of the Future? =

Have you ever struggled to solve a maze? Then imagine trying to finda ~ 71% ey
path through a tangled, three-dimensional maze as large as the Milky = (0
Way. By incorporating such a maze into a hash function, Kristin D o
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Equivalence of hard problems

1. Constructive Deuring correspondence in reverse direction :
given a supersingular j-invariant, compute corresponding
maximal order in B,

2. Endomorphism ring computation for random curves

3. Collision and preimage resistance of CGL hash function
for a random initial curve




Sketch (1) implies (2)

» Goal : given E and abstract representation of End(E) as a
Z-basis for a maximal order O C B, ., provide concrete
representations of endomorphisms generating End(E)




Sketch (1) implies (2)

» Goal : given E and abstract representation of End(E) as a
Z-basis for a maximal order O C B, ., provide concrete
representations of endomorphisms generating End(E)

» Let Ey special curve with known End(Ey) =~ Oy C By
» Compute ideal | connecting Og and O. We then have

| Oy I
n(/)

O C

2 O k‘\%‘“\.
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Goal : given E and abstract representation of End(E) as a
Z-basis for a maximal order O C B, ., provide concrete
representations of endomorphisms generating End(E)

Let Eo special curve with known End(Ep) ~ Oy C B,
Compute ideal / connecting Oy and O. We then have

| Oy I
n(/)

Translating / into an isogeny ¢ : Ey — E we have
¢ End(Eo) &
deg ¢

O C

End(E) C

2 O k‘\%\{.
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Goal : given E and abstract representation of End(E) as a
Z-basis for a maximal order O C B, ., provide concrete
representations of endomorphisms generating End(E)

Let Eo special curve with known End(Ep) ~ Oy C B,
Compute ideal / connecting Oy and O. We then have
I Oy 1
n(/)
Translating / into an isogeny ¢ : Ey — E we have
¢ End(Eo) &
deg ¢
(use [KLPT14] first to ensure n(/) powersmooth)

O C

End(E) C

2 O k‘\%\{.
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Conclusion and perspectives

» With a random initial curve, CGL hash function is secure
iff the endomorphism ring computation problem is hard

» For the later, “output representation does not matter”

» Initial curve in CGL hash function must be random
(and beware of any backdoor)




Conclusion and perspectives

With a random initial curve, CGL hash function is secure
iff the endomorphism ring computation problem is hard

For the later, “output representation does not matter”

Initial curve in CGL hash function must be random
(and beware of any backdoor)

Our algorithms and reductions are heuristic

Is SIDH secure ? only if endomorphism ring computation
problem hard [GPST16], but this may not be enough [P17]




Thanks'!

» Questions?
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