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Eisenträger-Hallgren-Morrison [EHM17]



Christophe Petit - Eurocrypt - May 2018 2

The threat of quantum computers
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Isogeny Problems

I Recently proposed for post-quantum cryptography

I Natural problems from a number theory point of view

I Classical and quantum algorithms still exponential time

I But still rather new, need further study

I Our results :
I Efficient reductions between three hard problem variants
I Efficient solutions for two (other) problems
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Supersingular curves and isogenies

I Let p be a prime. Up to isomorphism, any supersingular
elliptic curve is defined over Fp2

I An isogeny from a curve E1 is a non trivial morphism
φ : E1 → E2 sending 0 to 0

I In Weierstrass affine coordinates we can write

φ : E1 → E2 : φ(x , y) =

(
ϕ(x)

ψ2(x , y)
,
ω(x , y)

ψ3(x , y)

)
I Isogeny degree is deg φ = max{degϕ, degψ2}
I An endomorphism of E is an isogeny φ : E → E

(examples : scalar multiplications, Frobenius)
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Isogeny problems

I Isogeny problems with potential interest for cryptography
are about “computing” isogenies between two curves, or
some variant of this problem

I A bit tricky to define : degree must be large for security,
but then natural output representation is not efficient

I Endomorphism computation case : hard in general but
I Easy for special curves
I Scalar multiplications and Frobenius known trivially
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Endomorphism rings

I The endomorphisms of a curve E have a ring structure,
operations are addition law on E and composition

I The endomorphism ring of a supersingular curve over F̄p

is a maximal order in the quaternion algebra Bp,∞

I Deuring correspondence [D31] : bijection from
supersingular curves over Fp2 (up to Galois conjugacy)
to maximal orders in Bp,∞ (up to conjugation)

E → O ≈ End(E )
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Isogeny graphs

I Over F̄p the `-torsion E [`] is isomorphic to Z` × Z`

I There are ` + 1 cyclic subgroups of order ` ; each one is
the kernel of a degree ` isogeny

I `-isogeny graph : each vertex is a j-invariant over F̄p,
each edge corresponds to one degree ` isogeny

I Isogeny graphs are undirected

I In supersingular case all j and isogenies defined over Fp2

and graphs are Ramanujan (optimal expansion graphs)

I Isogeny problems ∼ finding paths in these graphs
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Charles-Goren-Lauter hash function

Katholieke Universiteit Leuven in Belgium.

Anticipating such a breakdown, Microsoft in

2005 banned both SHA-1 and MD5 from

new products and has removed MD5 from all

its current products, says Kristin Lauter, head

of the Cryptography Group at Microsoft

Research in Redmond, Washington. Fortu-

nately, a good backup is already available. In

2004, NIST issued several new standards,

collectively called SHA-2, which are more

secure than SHA-1 because they produce

longer hashes (up to 512 bits instead of 160).

But NIST worries that SHA-2 could even-

tually fall, too. “Everything that has been

attacked is in the same family,” says William

Burr of NIST’s Security Technology Group.

“It may turn out that they aren’t broken or

can’t be broken, but we didn’t want to get

caught out on the wrong side.”

After extensive debate, including two

international workshops in 2005 and 2006,

NIST decided that a new competition could

turn up completely new approaches to hash

functions. “We’ll be reluctant to pick some-

thing that looks just like SHA-2,” says Burr.

“We want some biodiversity.”

Although no designs have been formally

submitted yet—the deadline is in October—

experts predict that most entrants will con-

tinue to be iterative algorithms subtly

retooled to defeat the new kinds of attacks.

For instance, Preneel’s RIPEMD—one of the

few f irst-generation hash functions still

standing—performs two parallel iterations,

making it difficult for an attacker to figure

out which one to attack.

A second approach, called “provably

secure” hash functions, derives its presump-

tive security from math problems that are

considered to be hard to crack (see sidebar,

above). This type of algorithm typically does

not require multiple iterations, but it does

require cryptologists to put their faith in a

mathematical “black box.” Also, such algo-

rithms tend to be slower than iterative algo-

rithms because they require a more elaborate

calculation—even though it is performed

only once. Speed is at a premium for hash

functions, as they are typically used to tag a

document in the split-second it’s electroni-

cally transmitted.

Not surprisingly, mathematicians love

provably secure systems, whereas cryptolo-

gists have little use for them. “They are typi-

cally only provable with respect to one prop-

erty but are weak with respect to other proper-

ties,” says Joan Daemen of STMicroelectron-

ics, co-winner of the AES competition. For

instance, a “provably secure” hash developed

by Lenstra and his colleagues, called Very

Smooth Hash (VSH), was compromised last

year when Markku-Juhani Saarinen at a Span-

ish company called Kinamik showed that it

was easy to find “near-collisions” in VSH. In

practice, engineers often truncate a long hash

value to a shorter one, assuming that the trun-

cated hash will inherit the long one’s security.

Saarinen’s result means that they can’t count

on that with VSH.

In the final analysis, what makes it so

hard to come up with good hash func-

tions—and prove they work—is that they

are expected to do so many things. “You

expect them to do everything and blame

them when they don’t work,” says Preneel.

Perhaps a 4-year bake-off will be just what

the chef ordered to make some new hash

that will satisfy everybody’s tastes.

–DANA MACKENZIE

Dana Mackenzie is a freelance writer in Santa Cruz, 
California.

www.sciencemag.org SCIENCE VOL 319 14 MARCH 2008 1481
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Hash of the Future?

Have you ever struggled to solve a maze? Then imagine trying to find a
path through a tangled, three-dimensional maze as large as the Milky
Way. By incorporating such a maze into a hash function, Kristin
Lauter of Microsoft Research in Redmond, Washington, is betting
that neither you nor anyone else will solve that problem.

Technically, Lauter’s maze is called an “expander
graph” (see figure, right). Nodes in the graph corre-
spond to elliptic curves, or equations of the form y2 =
x3 + ax + b. Each curve leads to three other curves by
a mathematical relation, now called isogeny, that
Pierre de Fermat discovered while trying to prove
his famous Last Theorem.

To hash a digital file using an expander
graph, you would convert the bits of data
into directions: 0 would mean “turn right,”
1 would mean “turn left.” In the maze
illustrated here, after the initial step 1-2,
the blue path encodes the directions 1, 0, 1, 1, 0,
0, 0, 0, 1, ending at point 24, which would be the
digital signature of the string 101100001. The red
loop shows a collision of two paths, which would be
practically impossible to find in the immense maze
envisioned by Lauter.

Although her hash function (developed with colleagues
Denis Charles and Eyal Goren) is provably secure, Lauter admits
that it is not yet fast enough to compete with iterative hash func-
tions. However, for applications in which speed is less of an issue—
for example, where the files to be hashed are relatively small—Lauter
believes it might be a winner. –D.M.

Published by AAAS
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Strategy to break CGL hash function

I Idea : use Deuring’s correspondence (E ↔ O ≈ End(E ))

1. Translate collision and preimage resistance properties
from the elliptic curve setting to the quaternion setting

2. Break collision and preimage resistance for quaternions
3. Translate the attacks back to elliptic curve setting

I Steps 1 and 2 were solved in [KLPT14] : algorithms to
compute elements in a given ideal with a given norm
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Results in this paper

I Polynomial time collision attack on CGL hash function
for “special” initial curves [PL17]

I Constructive Deuring correspondence in one direction :
given a maximal order in Bp,∞, can efficiently compute
the corresponding j-invariant [PL17]

I Equivalence of hard problems [PL17]
I Constructive Deuring correspondence in other direction
I Endomorphism ring computation for random curves
I Collision and preimage resistance of CGL hash function

for random initial curves

I Other approach for some of these reductions, using an
oracle for the action on `-torsion problem [EHM17]
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Key tools

I Converting quaternion ideals to isogenies [W69]

I Let E0 with known End(E0) ≈ O0 ⊂ Bp,∞
I Isogenies from E0 correspond to left ideals of O0

I Correspondence computed by identifying kernels
I Efficient for powersmooth norms/degrees

I “Quaternion `-isogeny algorithm” [KLPT14,GPS17]

I Replace ideal by equivalent one with powersmooth norm
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Remember : CGL hash function

Katholieke Universiteit Leuven in Belgium.
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Partial attack on CGL hash function

I Suppose CGL hash function uses a special curve E0

I Goal : compute an endomorphism of E0 of degree `e

(this gives a collision with the void message)

I Compute α ∈ O0 ≈ End(E0) of norm `e (as in [KLPT14])

I Deduce a collision path in the quaternion setting
Ii = O0`

i + O0α, i = 1, . . . , e, where n(Ii) = `i

I For each i
I Compute Ji ≈ Ii with powersmooth norm
I Compute corresponding isogeny ϕi : E0 → Ei

I Deduce a collision path (E0,E1, . . . ,Ee = E0)
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Remember : CGL hash function
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x3 + ax + b. Each curve leads to three other curves by
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0, 0, 0, 1, ending at point 24, which would be the
digital signature of the string 101100001. The red
loop shows a collision of two paths, which would be
practically impossible to find in the immense maze
envisioned by Lauter.

Although her hash function (developed with colleagues
Denis Charles and Eyal Goren) is provably secure, Lauter admits
that it is not yet fast enough to compete with iterative hash func-
tions. However, for applications in which speed is less of an issue—
for example, where the files to be hashed are relatively small—Lauter
believes it might be a winner. –D.M.
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Equivalence of hard problems

1. Constructive Deuring correspondence in reverse direction :
given a supersingular j-invariant, compute corresponding
maximal order in Bp,∞

2. Endomorphism ring computation for random curves

3. Collision and preimage resistance of CGL hash function
for a random initial curve
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Sketch (1) implies (2)

I Goal : given E and abstract representation of End(E ) as a
Z-basis for a maximal order O ⊂ Bp,∞, provide concrete
representations of endomorphisms generating End(E )

I Let E0 special curve with known End(E0) ≈ O0 ⊂ Bp,∞
I Compute ideal I connecting O0 and O. We then have

O ⊂ I O0 Ī

n(I )
I Translating I into an isogeny ϕ : E0 → E we have

End(E ) ⊂ ϕ End(E0) ϕ̂

degϕ

(use [KLPT14] first to ensure n(I ) powersmooth)
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n(I )

I Translating I into an isogeny ϕ : E0 → E we have

End(E ) ⊂ ϕ End(E0) ϕ̂

degϕ

(use [KLPT14] first to ensure n(I ) powersmooth)



Christophe Petit - Eurocrypt - May 2018 20

Sketch (1) implies (2)

I Goal : given E and abstract representation of End(E ) as a
Z-basis for a maximal order O ⊂ Bp,∞, provide concrete
representations of endomorphisms generating End(E )

I Let E0 special curve with known End(E0) ≈ O0 ⊂ Bp,∞
I Compute ideal I connecting O0 and O. We then have

O ⊂ I O0 Ī
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Outline

Isogenies and related problems

Motivation : Charles-Goren-Lauter hash function

New results and techniques
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Conclusion and perspectives

I With a random initial curve, CGL hash function is secure
iff the endomorphism ring computation problem is hard

I For the later, “output representation does not matter”

I Initial curve in CGL hash function must be random
(and beware of any backdoor)

I Our algorithms and reductions are heuristic

I Is SIDH secure ? only if endomorphism ring computation
problem hard [GPST16], but this may not be enough [P17]
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Thanks !

I Questions ?
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