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Two class of Algorithms for SVP

The Shortest Vector Problem

I : The basis B of an n-dimensional lattice L
O: A shortest non-zero vector v ∈ L

Algorithm Running time Memory

Enumeration nn/2e · 2O(n) poly(n)

Sieving2 [2.292n+o(n), 2.415n+o(n)] [2.2075n+o(n), 2.292n+o(n)]

The paradox

In theory, Sieving is faster. In pratice it is quite slower.

2Given complexity are heuristic, heavily supported by experiments.
Léo Ducas (CWI, Amsterdam) SVP from Sieving: a Few Dims for Free 30 April 2018 2 / 23



Two class of Algorithms for SVP

The Shortest Vector Problem

I : The basis B of an n-dimensional lattice L
O: A shortest non-zero vector v ∈ L

Algorithm Running time Memory

Enumeration nn/2e · 2O(n) poly(n)

Sieving2 [2.292n+o(n), 2.415n+o(n)] [2.2075n+o(n), 2.292n+o(n)]

The paradox

In theory, Sieving is faster. In pratice it is quite slower.

2Given complexity are heuristic, heavily supported by experiments.
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Many trade-offs
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I Our main contribution can also
be applied to other sieving
algorithms.

I Implementation limited to the
version of
[Micciancio Voulgaris 2010].
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Results

Heuristic claim, asymptotic

One can solve SVP in dimension n with a call to Sieve in dimension n − d

where d = Θ(n/ log n).

Heuristic claim, concrete

One can solve SVP in dimension n making a call to Sieve in dimension i
for each i = 1 . . . n − d for

d ≈ n · ln(4/3)

ln(n/2πe)
(d ≈ 15 for n = 80)

Experimental claim: A bogey

A Sieve implem. almost on par with enumeration (within a factor 4 in
dims 70–80), with still much room for improvements.
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Sieving

Algorithm 1 Sieve(L)

L← a set of N random vectors from L where N ≈ (4/3)n/2.
while ∃(v,w) ∈ L2 such that ‖v −w‖ < ‖v‖ do

v← v −w
end while
return L

The above runs in heuristic time (4/3)n+o(n).

Many concrete and asymptotic improvements:
[Nguyen Vidick 2008, Micciancio Voulgaris 2010, Laarhoven 2015,
Becker Gamma Joux 2015, Becker D. Gamma Laarhoven 2015, . . . ].
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More than SVP

Note that Sieve returns N ≈ (4/3)n short vectors, not just a shortest
vector.

Definition (Gaussian Heuristic: Expected length of the shortest vector)

gh(L) =
√

n/2πe · vol(L)1/n.

Observation (heuristic & experimental)

The output of Sieve contains almost all vectors of length ≤
√

4/3 · gh(L):

L := Sieve(L) =
{
x ∈ L s.t. ‖x‖ ≤

√
4/3 · gh(L)

}
.
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Sieve then Lift

Main idea: Sieve in a projected sub-lattice, and lift all candidate solutions.

SubSieve(L, d)
I Set L′ = L(b1, . . . ,bd) “left part of L”, dim=d

I Set L′′ = π⊥
L′(L) “right part of L”, dim=n − d

I Compute L = Sieve(L′′)

I Hope that π⊥
L′(s) ∈ L (1)

I Lift all v ∈ L from L′′ to L and take the shortest (Babai alg.)

Pessimistic prediction for (1)

gh(L) ≤
√

4/3 · gh(Ld).

Optimistic prediction for (1)

√
n − d

n
·gh(L) ≤

√
4/3·gh(Ld).

Similar to linear pruning for enum.

Léo Ducas (CWI, Amsterdam) SVP from Sieving: a Few Dims for Free 30 April 2018 9 / 23



Sieve then Lift

Main idea: Sieve in a projected sub-lattice, and lift all candidate solutions.

SubSieve(L, d)
I Set L′ = L(b1, . . . ,bd) “left part of L”, dim=d

I Set L′′ = π⊥
L′(L) “right part of L”, dim=n − d

I Compute L = Sieve(L′′)

I Hope that π⊥
L′(s) ∈ L (1)

I Lift all v ∈ L from L′′ to L and take the shortest (Babai alg.)

Pessimistic prediction for (1)

gh(L) ≤
√

4/3 · gh(Ld).

Optimistic prediction for (1)

√
n − d

n
·gh(L) ≤

√
4/3·gh(Ld).

Similar to linear pruning for enum.
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With BKZ pre-processing

I To ensure (1), we need the basis to be as reduced as possible

I We can easily afford BKZ preprocessing with block-size b = n/2

I Using simple BKZ models3 we can predict gh(L) and gh(L′)

Heuristic claim

SubSieve(L, d) algorithm will successfully find the shortest vector of L for
some d = Θ(n/ ln n).

⇒ Improve time & memory by a sub-exponential factor 2Θ(n/ log n)

3The Geometric Series Assumption
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Quasi-HKZ preprocessing

Idea: Attempt stronger pre-processing.

Algorithm 3 SubSieve+(L, d)

L← Sieve(L′′)
L = {LiftL′′→L(v) for v ∈ L}
for j = 0 . . . n/2− 1 do

vj = arg mins∈L ‖π(v0...vj−1)⊥(s)‖
end for
return (v0 . . . vn/2−1)

I Insert (v0 . . . vn/2−1) as the new b1 . . .bn/2

I Repeat SubSieve+(L, d) for d = n − 1, n − 2, . . . , dmin

I Hope that iteration dmin + 1 provided a quasi-HKZ basis.
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Concrete prediction with quasi-HKZ preprocessing

Pessimistic prediction for (1)

d ≈ n ln 4/3

ln(n/2π)

Optimistic prediction for (1)

d ≈ n ln 4/3

ln(n/2πe)
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pessimistic approximation
optimistic simulation
optimistic approximation

Figure: Predictions of the maximal successful choice of dmin.
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Baseline Implementation (V0)

Re-implemented GaussSieve [Micciancio Voulgaris 2010]
I No gaussian sampling

I Initial sphericity of L doesn’t seem to matter
I Initial vectors can be made much shorter ⇒ speed-up

I Prevent collisions using a hash table

I Terminate when the ball
√

4/3 · gh(L) is half-saturated
I Sort only periodically

I Can use faster data-structures

I Vectors represented in bases B and GramSchmidt(B)
I Required to work in projected-sublattices

I Kernel in c++, control in python
I Calls to fpylll to maintain B and GramSchmidt(B)
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Léo Ducas (CWI, Amsterdam) SVP from Sieving: a Few Dims for Free 30 April 2018 14 / 23



XOR-POPCNT trick (V0 → V1)

Already used in Sieving [Fitzpatrick et al. 2015].
More generally know as SimHash [Charikar 2002].

Idea: Pre-filter pairs (v,w) ∈ L with a fast compressed test.

I Choose a spherical code C = {c1 . . . ck} ⊂ Sn and a threshold t ≤ k/2

I Precompute compressions ṽ = Sign(v) ∈ {0, 1}k

I Only test ‖v ±w‖ ≤ ‖v‖ if

|HammingWeight(v ⊕w)− k/2| ≥ t.

I Asymptotic speed-up Θ(n/ log n) ?

I In practice, k = 128 (2 words), t = 18: about 10 cycles per pairs.

Léo Ducas (CWI, Amsterdam) SVP from Sieving: a Few Dims for Free 30 April 2018 15 / 23



Progressive Sieving (V1 → V2)

Concurrently and independetly invented in [Mariano Laarhoven 2018].

Idea: Increase the dimension progressively.

I Recursively, Sieve in the lattice L(b1, . . .bn−1)

I Start the sieve in dimension n with many short-ish vectors

I Fresh vector get reduced much faster thanks to this initial pool.

Refer to [Mariano Laarhoven 2018] for a full analysis of this trick.
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Dimensions for Free (V2 → V3)

I Apply the quasi-HKZ preprocessing strategy
I Do not force the choice of dmin

I Simply increase d until the shortest vector is found.

60 62 64 66 68 70 72 74 76 78 80 82
n

6

7

8

9

10

11

12

13

14

15

16

17

18

19

d

pessimistic simulation
pessimistic approximation
optimistic simulation
optimistic approximation
Experimental average

Figure: Predictions experiments for dmin.

Léo Ducas (CWI, Amsterdam) SVP from Sieving: a Few Dims for Free 30 April 2018 17 / 23



Performances

40 50 60 70 80
n

100

101

102

103

T (sec. )

Fit V0: 20. 489n− 21. 6

Fit V1: 20. 505n− 24. 6

Fit V2: 20. 470n− 24. 8

Fit V3: 20. 396n− 23. 6

Fit Enum: 20. 0683n · lnn− 17. 9

V0 (Sieve)
V1 (Sieve)
V2 (Sieve)
V3 (SubSieve)
fplll's Pruned Enum.

Figure: Our implementation, vs. fplll pruned enumeration.
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Comparison to other Sieving implementation

Algorithms
V0 V1 V2 V3 [MV10] [FBB+14] [ML17] [HK17]

Features
XOR-POPCNT trick x x x x
pogressive sieving x x

SubSieve x
LSH (more mem.) x
tuple (less mem.) x

Dimension Running times
n = 60 227s 49s 8s 0.9s 464s 79s 13s 1080s
n = 70 - - 276s 10s 23933s 4500s 250s 33000s
n = 80 - - - 234s - - 4320s 94700s

CPU freq. (GHz) 3.6 3.6 3.6 3.6 4.0 4.0 2.3 2.3
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Summary

Sieving vs. Sieving

I Exploit all outputs of Sieve ⇒ Dimensions for Free

I Our implementation is 10x faster than all previous Sieving

I It does not use LSH techniques: further speed-up expected

Sieving vs. Enumeration

I Only a factor 4x slower than Enum for dimensions 70–80

I Guesstimates a cross-over at dim ≈ 90 with further improvements
(LSH/LSF, fine-tuning, vectorization, . . . )

To be continued. . .
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Thanks !

Question ?
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Simple Sieving in the Area-Time Model

A claim of P. Kirchner4

A simple Sieving algorithm (e.g. NV) can be implemented with

A = 2.2075n+o(n) and T = 2.2075n+o(n).

The circuit is easy to re-invent, using shift registers:

I No long wires: no speed-of-light delays !

I Essentially 1-dimensional

v→ v→ v→ v→· · ·→ v→ v
↗ | | | | | ↓
|
⊙ ⊙ ⊙ ⊙ ⊙

v
↖ | | | | | ↓

v← v← v← v←· · ·← v← v

4https://groups.google.com/forum/#!msg/cryptanalytic-algorithms/

BoSRL0uHIjM/wAkZQlwRAgAJ
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Advanced Sieving in the Area-Time Model

Conjecture / Open Question

There exist a sieving circuit with:

A = 2.2075n+o(n) and T ≤ 2.142n+o(n).

Hint
I [Becker Gama Joux 2015] with only on level of filtration

I 3 or 4 layers of 2-dimensions should suffice.

I Keep shift-registers not fully saturated, for easier on-the-fly insertion.
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