Computer-aided cryptography

Gilles Barthe
IMDEA Software Institute, Madrid, Spain

May 1, 2017

Call for Papers
CRYPTO 2011

General Information

Original papers on all technical aspects of cryptology are solicited for submission to CRYPTO 2011, the 31st
Annual International Cryptology Conference. Besides the usual topics, submissions are also welcome on
topics not routinely appearing at recent CRYPTOs, including cryptographic work in the style of the CHES
workshop or CSF symposium. CRYPTO 2011 is sponsored by the International Association for Cryptologic
Research (IACR), in cooperation with the Computer Science Department of the University of California,
Santa Barbara.

Computer-Aided Security Proofs
for the Working Cryptographer*

Gilles Barthe!, Benjamin Grégoire?, Sylvain Heraud?, and
Santiago Zanella Béguelin®

» S. Halevi: A plausible approach to computer-aided
cryptographic proofs

» M. Bellare and P. Rogaway: Code-Based Game-Playing Proofs
and the Security of Triple Encryption

» V. Shoup: Sequences of Games: A Tool for Taming
Complexity in Security Proofs

Computer-aided cryptography

Develop tool-assisted methodologies for helping the design,
analysis, and implementation of cryptographic constructions
(primitives and protocols)

Goals:

» Automated analysis of (symbolic or computational) security

v

Independently verifiable proofs of (computational) security

v

Verified implementations
» New designs and better implementations
> etc
Building on formal methods
» program analysis (safety)
» program verification (correctness)
» compilation (optimization)
» program synthesis
> etc

Potential benefits

Formal methods for cryptography
» higher assurance
» smaller gap between provable security and crypto engineering
» new proof techniques
Cryptography for formal methods
» Challenging and non-standard examples

» New theories and applications

A long-term goal

» FOR EVERY adversary that breaks assembly code,

» |F assembly code is safe and leakage resistent,

» AND assembly code correctly implements algorithm,

» THERE EXISTS an adversary that breaks the algorithm

Challenges:
» Models: execution, leakage, adversaries
» Practical: build efficient libraries

» Formal methods: theories and engineering

Current landscape

» Security in symbolic and computational model: ProVerif,
Tamarin, CryptoVerif, EasyCrypt, F*...

v

Side-channel analysis: ct-grind, ct-verif, FlowTracker,
CacheAudit, Sleuth, maskcomp, maskverif

\4

Safety: TIS analyzer. ..

v

Functional correctness: Cryptol, CompCert/VST, gf-verif. ..

v

Cryptographic engineering: ghasm, boringssl, Charm. ..

Case study: MEE-CBC

» Black-box IND$-CPA security proof
» Equivalence w/ C implementation and specification
» Compile C using CompCert

» Apply certified constant-time verifier

Other examples: PKCS, HMAC, HACL*, miTLS

EasyCrypt

Domain-specific proof assistant
» proof goals tailored to reductionist proofs

» proof tools support common proof techniques (bridging steps,
failure events, hybrid arguments, eager sampling. . .)

Control and automation from state-of-art verification

» interactive proof engine and mathematical libraries
(a la Coq/ssreflect)

» back-end to SMT solvers and CAS

Game playing as (implicit) probabilistic couplings

Let u is a R-coupling for (p1,12).

» Bridging step: if R is equality, then for every event X,
Przp [X] = Prz—p,[X]

» Failure Event: If x R y iff F(x)=>x=y and F(x) < F(y),
then for every event X,

|Prz<_y1 [X]=Pry—p, [X]| < max(Pry—y, [7F],Proey, [~ F])
» Reduction: If x R y iff F(x)= G(y), then

Pryy, [G] < Pryy, [F]

Cryptographic proofs as probabilistic couplings

A useful insight?

» Prior (but limited) use of probabilistic couplings in crypto
» Key to build scalable verification infrastructure

o No need to reason directly about probabilities
e Make crypto proofs look “almost” like standard verification

» Helps generalizations (differential privacy, quantum crypto)

Code-based approach to probabilistic couplings

» Code-based approach

€ =

skip

V<&

V&Y

€; €

if & then € else €
while & do €
V—P(8,...,6)

skip

assignment

random sampling
sequence

conditional

while loop

procedure (oracle/adv) call

» Game-playing technique: E{P} ¢; ~ ¢ {Q} where P and @
are relations on states

» Concrete security: {¥}c{Pr[®] < f} (many limitations)

» Bound execution time of constructed adversary
(limited tool support)

Some proof rules

Conditionals

F{@AbIABY) ¢ ~ o () E{@Aby Aby) ¢ ~ ¢ (W)
E{® A by = by} if by then ¢ else c] ~ if by then ¢ else ¢} {¥}

Random assignment

FeT2T WveT. m(v)=p(f v)
E{Vv,Qv/x1,f v/x]} x1 & 1 ~ xo & pp {Q}

Status

» Broadly applicable: encryption, signatures, hash designs, key
exchange protocols, zero-knowledge protocols, garbled circuits,
SHA3, voting

» Helped unveiled subtle points in proofs

» Interactive tools remain time-consuming and difficult to use

A lightweight approach

o Probabilistic experiments
o Probabilistic inequalities

o Proofs

Formalization brings significant benefits at each stage

» Abstraction and automation (problem specific)

Highly automated proofs

Many high-level principles are guess-and-check:
» Bridging steps: guess couplings, check equivalence
» Reduction steps: guess adversary, check equivalence
Automation:
» Proof-producing equivalence checker
» Heuristics for guessing
AutoG&P
» Automated proofs for DDH-based cryptography

» Cramer-Shoup, Boneh-Boyen, structure-preserving encryption

Challenge

» Build sufficiently rich set of high-level rules

» Decision procedures
(Jutla and Roy 2012, Carmer and Rosulek 2016)

Automated proofs in ROM

f(ml0)e G(r) Il re H((mll0)e G(r)))

» Hard to get security proofs right

» 6 months to formalize the proof!

» Many variants in the literature

About 200 variants of SAEP/OAEP (Komano and Ohta)

About 10°—108 candidates schemes of “reasonable’ size

v

v

» Can we automate analysis for finding attacks or proofs?

ZooCrypt

» Extremely efficient logics for CPA and CCA security
(up-to-bad, optimistic sampling, reduction, reject some
ciphertexts)

» Extremely efficient procedures for detecting attacks

» Smart generation of candidate constructions

» Generated 1,000,000 candidates
» For CPA security: 99,5% solved by the tool
For CCA security: 80% solved by tool

Practical interpretation (sql database)

\4

\4

v

Manual inspection for grey zone

Interactive tutor

v

ZAEP

> OAEP (1994):
f((m)0)® G(r) | re H((mll0)® G(r)))
> SAEP (2001):
f(r | (mllo)e G(r))

» ZAEP (2012):
f(rliime G(r))

= redundancy-free
1 INDCCA secure for RSA with exponent 2 and 3

Automated proofs in GGM

v

Introduced for proving lower bounds of DL algorithms

v

Algorithms do not have direct access to algebraic values

v

Used for validating hardness assumptions and efficient schemes

v

Master theorem: symbolic security implies generic security

v

Symbolic security by constraint solving (big operators)

v

Applications: synthesis of SPS and ABE compiler

Timing attacks

v

AES (Osvik, Shamir, Tromer 2006)
MEE-CBC (AlFardan, Paterson 2013)
RSA (Yarom, Falkner, 2014)

L

\4

v

Work remotely!

Cryptographic constant-time

Control flow and memory accesses should be independent of secrets

However, cryptographic constant-time is hard to program

Case study: MEE-CBC s2n implementation

» number of calls to compression function during decryption
must not depend on padding length or validity (Lucky 13)

» s2n performs some mitigation and adds random delay
» Insufficient in practice (Luckyus). More mitigation

» Off-by-one error still causes large timing discrepancies, and
leads to plaintext recovery

ct-verif

Product program

» Two copies of program in lockstep

» Check agreement at critical instructions (branching/memory)

Inspired from Zaks and Pnueli (2008)

» Sound and relatively complete

» Supports private and public outputs

» Implementation for LLVM, based on Smack

» Extensively evaluated: NaCl, OpenSSL, FourQ, SUPERCOP

Ongoing: vector instructions, counter-example generation

v

Differential power analysis

power consumption — statistical treatment

secret encryption key

plaintext I ciphertext

» Measure power consumption during execution

» Analysis of power can be used to recover secrets

Security models and masked implementations

» Threshold probing model: adversary can observe t-tuples of
intermediate values

» Noisy leakage model: all instructions leak. Leakage is noisy

Models are equivalent (Duc, Dziembowski, Faust 2014)

ol %

Value x encoded by t+ 1-tuple of prob. values (xp...x:) s.t.
> Xp,...,xt are i.i.d. w.r.t. to uniform distribution

> X=Xp+..+X¢t

Prior work

» Moss, Oswald, Page and Tunstall (2012)
» Bayrak, Regazzoni, Novo and lenne (2013)
» Eldib, Wang and Schaumont (2014)

Limited to low orders, does not compose well

Probing security, formally

Program c is secure at order t iff
» every set of observations of size <t can be simulated with at
most < t shares from each input;
» every set of observations of size d <t can be simulated with at
most < d shares from each input
» given two equivalent inputs, the joint distributions for a set of
observations of size <t are equal

Simplified case

Let 7 : A; x A — B. The following are equivalent:
> there exists g: Ay — B s.t. f(a1,a2) =g(az) for every aj,a>

» f(a1,a2) =f(a],a2) for every aj,a],a

MaskVerif

» Check probabilistic non-interference for large sets

» Works well in practice

Reference ‘ Target # tuples Security ‘ # SeCtzmplleinqe (s)
First-Order Masking
FSE13 full AES 17,206 3,342 128
MAC-SHA3 ‘ full Keccak-f ‘ 13,466 ‘ ‘ 5,421 ‘ 405
Second-Order Masking
RSA06 Sbox 1,188,111 4,104 1.649
CHES10 Sbox 7,140 1%-order 866 0.045
flaws (2)

CHES10 AES KS 23,041,866 771,263 340,745
FSE13 2 rnds AES 25,429,146 511,865 1,295
FSE13 4 rnds AES 109,571,806 2,317,593 40,169

Third-Order Masking
RSA06 Sbox 2,057,067,320 39-order 2,013,070 695
e R flaws (98,176) e
FSE13 Sbox(4) 4,499,950 33,075 3.894
FSE13 Sbox(5) 4,499,950 39,613 5.036
Fourth-Order Masking
FSE13 [Shox (4) [2,277,036,685 || [3,343,587 | 879
Fifth-Order Masking
CHESIO | © [216,071,394 [856,147 | 45

MaskComp

» Compositional security notion

» Fully automated type-based information flow analysis
(using abstract sets with cardinality constraints)

» Type-driven automated insertion of (SNI) refresh gadgets
» used to mask AES, Keccak, Simon, Speck at high orders

» generated code is reasonably fast, e.g. AES masked at order 7
is ~100x slower than unmasked code

Composition

to @ Constraint:

observations to+ti+th+t3<t

>
S

t1
observations

L4

.
b

o
observations

4

t3
observations

Strong non-interference

show that any set of t intermediate variables with

- t1 on internal variables
- tp =t—1t; on the outputs

can be simulated with at most t; shares of each input

R ™
N 2 internal

observations

L)
A

[)) .
observation

» Several gadgets are strong non-interfering
» Extended MaskVerif to check SNI

Secure Composition

to @ Constraint:

observations to+ti+tr+t3+t, <t

>
S

t1
observations

&)
A
observatlons 2
tr
internal ob-
servations

@/E&

/
ﬁ

t:
A3 3

observations

Status

» Automated synthesis of refreshing gadgets

» Conversion between boolean and arithmetic masking

Summary

Foundations and tools for high-assurance cryptography

» Provable security

» Practical cryptography

» Reducing the gap between security proofs and implementations
Many exciting directions

» Automation (lattice-based crypto, etc)

» High-speed implementations (Jasmin)

v

Language-based methods for information-theoretic security

\4

Synthesis (Hoang, Katz, Malozemoff 2015, Carmer, Rosulek
2016)

» Quantum cryptography

