Scrypt is Maximally
Memory Hard

Binyi Chen
UCSB

Joél Alwen
IST Austria

Al

Krzysztof Pietrzak
IST Austria

Leonid Reyzin Stefano Tessaro
Boston University 6 N UCSB

Password hashing: Store a hash of a password + salt

/ \ S$55MnfsQ4iNSZMTppKN16y/tIsUYs/
password — obHIhdP.0s80yXhTurpBMUbAS5
B — F(salt | | password)
salt —>
AU /

/y Honest users can still login quickly.

) ~ 1 evaluation of F
F is moderately hard

==y Brute-force attack is infeasible.\‘g

Many evaluations of F

Traditional hardness metric: Time complexity (e.g., PKCS #5)

AS | C- res | Sta nce better parallelization, pipelining for

speedup; lower energy costs ...

Adversaries
(ASICs)

Honest users
(General-purpose CPU)

cost per Feval = C costperFeval=C" < C

Can we enforce C' = C?

S -

ldea: Memory costs (e.g., on-chip area, access time, S-cost)
are platform independent

Memory-hard functions (MHFs)percival, 2009)

Small memory = slow

large memory evaluation of MHF F

Memory-hardness, more precisely

Goal: Maximize cumulative memory complexity (CMC)
for any (possibly parallelized) strategy to evaluate F.

Memory usage

[MI‘

Time /—
Time needed to evaluate F

— \'T
CMC =),t—o Memory(t)
[Alwen and Serbinenko, STOC ’"15]

4 .:-! “/ Mystery
Memory-hardness \\,""" // o
T -

N
Y r ;
® P . Algorithm

PHC call for submissions

The Password Hashing Competition (PHC) organizers solicit proposals from any interested party for candidate password
hashing schemes, to be considered for inclusion in a portfolio of schemes suitable for widespread adoption, and covering a
broad range of applications.

Security
M emo ry_h a rd ness was d e- . Cryptc:-gr.ath selcumy: .the function should beha.ve as a random function (random-locking output, one-
. way, collision resistant, immune to length extension, etc.).
facto requireme nt for PHC « Speed-up or other efficiency improvement (e.g., in terms of memory usage per password tested) of

cracking-optimized implementations (checking multiple sets of inputs in parallel, and doing so in a CPU's
\ native code) compared to implementations intended for password validation should be minimal.
« Speed-up or other efficiency improvement (e.g., in terms of area-time product per password tested) of

cracking-optimized ASIC, FPGA, and GPU implementations (checking multiple sets of inputs in parallel)
compared to CPU implementations intended for password validation should be minimal.

« Resilience to side-channel attacks (timing attacks, leakages, etc.). In particular, information should not
leak on a password's length.

Many memory-hard candidates: Argon2d, Argon2i, Scrypt,

Lyra2, Balloon hashing, Catena, Yescrypt,

Can we build provably memory-hard functions?

Towards optimal memory hardness

Previous provably MHFs [AS15,BCS16,ABP17] are
iIMHFs: data-independent memory access patterns!

memory

memory

I — MHF — 0

W i

Two issues raised by Alwen and Blocki:

N

I, — MHF — 0,

(1) No iMHF achieves optimal memory hardness. | Can data-

(2) Practical iMHFs are even less memory hard

for parallel evaluation strategies.

— dependence

help? "!i@;‘;\

This paper: Scrypt is optimally memory hard

e Very first conjectured MHF: Proposed by
Colin Percival in 2009

e Used within PoWs in Litecoin

* Inspired the design of Argon2d — one of the
winners of Password Hashing Competition

 Covered by RFC 7914

Take home message: . it |

- zhs L€afne
Very first example of function ¥ i “'m'
with provably optimal memory |

hardness.

+ it is practical, already in use, and relatively simple

Finding such proof has been a surprisingly
hard problem:

e [Percival, 2009] is incorrect
 [ACKKPT16] only gave restricted result

No iIMHF achieves optimal memory hardness

Roadmap

1. The Scrypt function

Definition, memory-hardness intuition, and
challenges

2. Optimal memory hardness of Scrypt

3. Conclusions

Core of Scrypt: ROMix

Modeled as a random oracle!l —— H: A Salsa20 based “hash function”
with output length w.

XO > H :Xl > H > XZ » H :X3 » H — - _>XTL—2_> H _’)(n—l—> H _’Bo"'

=
I
e

__

L H -»BP,Y ---- \ H —ROMix(X,)
Co=Bymodn (;,=Bymodn C, C3 Cr-1

n: a tunable parameter.
eg,n=2" w=1KB

ROMix: Answering challenges

> H :X3 » H — - _>XTL—2_> H _>XTL—1_>BO__-'
/ :

H —ROMix(X,)

H»BBY-—-—

C, revealed! Cj3 Ch-1 learnt after
answering all C;

—_—

Cn, Cq,...C.._;unpredictable challenges:
0, &1y - bp—1 UNP & Useful to
1. Needto know X tolearn C; 4
J - abstract
2. Need to answer all challenges to .
: this!
complete the evaluation

Abstraction: Round Game

_XO > H :Xl > H :XZ > H :XS » H :X4 > —— —p _—»H—»Xn 1
Input

Abstract 2" phase: challenges are H-dependent random!

Forallroundj =0,...,n — 1:

¢ —{0,1,..,n— 1) /@

>

%
Ae; \‘5 X,

Challenger Adversary

Adversary’s goal: Reduce its own CMC for answering all challenges!

CMC = Cumulative Memory Complexity = Y.I_, Memory(t)

Round game — Naive strategy

Forroundj =0ton —1: :\r/‘lit: 0] « X
em|0| «
C; °
T fori=1,..,ndo
Mem|i| « H(Mem|i — 1
XCj : / [] ([])
| Upon challenge (;: return Mem|(;]
. — ~ CMC = Q(n*w)
o o |
= - — - 0(nxw) 1 _
S Lo i remember it!
\ ‘ - S
Y |
O(n) Co Cy Cy Cn-1

Round game — Memory-less strategy

Forroundj =0ton—1:

Memory

Upon challenge (;:

X=X0

fori =1, ...

__—return X

,Cjdo X « H(X)

CMC = Q(n*w)

t

again!

Expected= 0(n)

Previous two strategies are special cases: consistent memory size

Naive strategy | CMC = Q(n’w) Memory-less strategy CMC = Q(n?w)
=] o I >
=] [| o
€ I B | I £
v o |]
= I : S
1 ', . - : . &
444 4 4 4 4 4 4
C0C1C2 Cn—l Co C1 C; C3 Cn—l

More general strategy: memory consumption can vary a lot
e.g., forget values, re-compute afterward

large memory at the time reduce memory afterward T;=time to answer
_achallenge is revealed the i-th challenge

Memory

t t & { Time .
C

Goal: prove CMC = Q(n*w)!

v

Memory hardness: intuition

Intuition: Answering challenge fast requires large state!

answer quickly = small initial state
large initial state = answer slowly

Memory

I’y

Time T
challenge C, C; C,

Single-shot memory-time trade-off

Simplifying assumption: upon learning challenge C;,
adversary only stores p of the values X, ..., X;,_1

n=10,p =3 Gj
stored l
Xo— X1 — X, — X3 — X, — X; > Xg > X7 > Xg — Xo
L Y]
dist = 3

Fact: Avg-distance from ch to closest stored X; preceding XC]. isn/2p

Regardless of parallelism, as computation of X-values is inherently sequential!

Expected time to answer the challenge is n/2p

/

~ | memory|

How to translate this intuition into a memory-
hardness proof for ROMix?

Three technical barriers:

1. Adversary stores arbitrary information -
e.g., XOR of X; values, halves of X;, reconstruct
information adaptively on challenges, etc.

[ACKKPT16] considered restricted strategies and exhibited
round games where general storing strategies can help!

Focus on

- 1and 2
2. Memory variation during computation M

emory

single-shot memory-time trade-off not enough!

n2w

[ACKKPT16] only shows CMC = () | e |

log2(n) 4 ¢ L

3. H-dependent challenges, as opposed to
truly random see the paper!

Roadmap

1. The Scrypt function

2. Optimal memory hardness of Scrypt

Model, theorem, and proof approach

3. Conclusions

The parallel random oracle model
[Alwen and Serbinenko, STOC "15]

@ @ ROMIix(X,)

arbitrary arbitrary \\
computation computation
Xo > S — > Sy — e — St -—>\‘§'——>Y

initial state new state new state

At each step: Adv asks one batch of parallel H queries
+ performs unbounded computation

Goal of adv: minimize CMC = ZiT=1 |S; |

Main Theorem.

For any adversary A evaluating ROMix,

CMC(A) = % -n¢-(w —4-log(n))

w/ overwhelming probability over the choice of H.

The 4log(n) loss is inherent in the proof.

Q(n*w) clearly best possible for any
construction making n queries to H.

Naive strategy: Make n calls, remember all outputs

Proof strategy: step 1

Green (memory usage at this step) T;=time to answer the
is inversely proportional to (T;) i-th challenge
> Q(nw)
>
o
£
(V]
] W\MLWM
I I I
t o ot
challenge C; Cii1

Memory-time trade-off = lower bound on memory

The memory-time trade-off holds true for adv STEimas=ralues
even if the adv stores arbitrary information!

Single-shot memory-time trade-off
C

}

XO » H :Xl » H :XZ » H :)(3 » H :X4 :———»Xn_2—> H —»Xn_l
input

state
T steps

ARz)C) el reCOVET X

Z': arbitrary computation on H-outputs Goal: Lower bound |Z]|
* E.g., pre-computation of H’s entries, as function of T and n
XOR of {X;} values, halves of X;

[ACKKPT16]: computation on H-outputs can help in some
round games

[This result]: computation on H-outputs cannot help for Scrypt!

Single-shot memory-time trade-off

C

}

XO » H :X1 » H :XZ > H :)(3 > H :X4 > ———»Xn_2—> H —»Xn_l
input

H T steps
A(A) () ey recover X

Lemma. For all 4, for most H, if |Z| = pw bits

T>n >1
2

P
r 2D

C

Lemma. For all 4, for most H, if |Z| = pw bits

Pr|T > - > L

. |z

C 2p| 2

Proof idea:

If adversary A" (Z,) A" (Z, C) can output or
answers too fast for query many X; values
most challenges C w/o querying H first

C

Cannot be true for too many H: random oracle is incompressible
[Dwork, Naor and Wee, Crypto’05], [Alwen and Serbinenko, STOC "15]

Can compress the oracle
H using state Z

Proof strategy: step 2

Technical barriers:
1. Adversary stores arbitrary information W’

Single-shot memory-time trade-off for arbitrary adv

2. Memory variation during computation M\

3 Time 1.’_
Co c

Single-shot Optimal CMC
memory-time q lower bound for
trade-off the round game

I

Generalize

CMC lower bound Lemma. Pr[p S

when learning the i-th chaIIenge T;=time to answer the i-th
Imemory| > — challenge
2T;
/
no lower bound / General strategy

at this step

> |

o i

£ i

(V) I I

= : . i
I I i =: 'I T
4 Ty T Ty T T T I3 T Ty 4 Ts

CO Cl Cz C3 Time C4- C5

memory-time trade-off = memory lower bound

.) CMC="7?7??
for the step right before the challenge is revealed

CMC lower bound temma. Pr [p > >

T;=time to answer the i-th

mem at every step = funcs of n and
challenge

time to answer the next challenge

General strategy

Memory

N Tereenir_werselvT iTz T IT i

proportional to

CO Cl Cz 63 Time C4- CS

Similar trade-off holds for every step before challenge is revealed

CMC lower bound Lemma. lzr [p > % >%

During round i — 1: T;=time to answer the i-th
Sum of memory > nTWln (1 + Ti‘l) challenge

L

General strategy

(o 1Y
I
)

Memory

CO Cl Cz Cg Time C4- CS

By adding lower bounds over rounds from O ton — 1, 4= amw)
we have CMC = Q(n?w)

Roadmap

1. The Scrypt function

2. Optimal memory hardness of Scrypt

3. Conclusions

Summary

* Scrypt is maximally memory hard
— First optimal memory-hardness proof.

— Validates a practical MHF design.

* Open problem

— Optimal memory hardness proof for Argon2d?

Thank you! — Merci!
https://eprint.iacr.org/2016/989

