
Joël Alwen
IST Austria

Krzysztof Pietrzak
IST Austria

Leonid Reyzin
Boston University

Stefano Tessaro
UCSB

Binyi Chen
UCSB

Scrypt is Maximally
Memory Hard

F
password

salt

Password hashing: Store a hash of a password + salt

F(salt || password)

F is moderately hard

Honest users can still login quickly.

Brute-force attack is infeasible.

Traditional hardness metric: Time complexity (e.g., PKCS #5)

≈ 1 evaluation of F

Many evaluations of F

5MnfsQ4iN$ZMTppKN16y/tIsUYs/
obHlhdP.Os80yXhTurpBMUbA5

Honest users
(General-purpose CPU)

cost per F eval = 𝑪

Adversaries
(ASICs)

cost per F eval = 𝑪′ ≪ 𝑪

better parallelization, pipelining for
speedup; lower energy costs …

ASIC-resistance

Can we enforce 𝑪′ ≈ 𝑪 ?

Idea: Memory costs (e.g., on-chip area, access time, $-cost)
are platform independent

Memory-hard functions (MHFs)[Percival, 2009]

Fast evaluation of MHF F ⇒

large memory

Small memory ⇒ slow

evaluation of MHF F

𝑇

Memory-hardness, more precisely

CMC = σ𝑡=0
𝑇 Memory(𝑡)

M
e

m
o

ry
 u

sa
ge

Time0

[Alwen and Serbinenko, STOC ’15]

Goal: Maximize cumulative memory complexity (CMC)
for any (possibly parallelized) strategy to evaluate F.

Time needed to evaluate F

Memory-hardness

Memory-hardness was de-
facto requirement for PHC

Many memory-hard candidates: Argon2d, Argon2i, Scrypt,

Lyra2, Balloon hashing, Catena, Yescrypt, ……

Can we build provably memory-hard functions?

Towards optimal memory hardness

(1) No iMHF achieves optimal memory hardness.

memory

𝐼1 𝑂1MHF 𝐼2 𝑂2MHF

memory

Previous provably MHFs [AS15,BCS16,ABP17] are
iMHFs: data-independent memory access patterns!

(2) Practical iMHFs are even less memory hard
for parallel evaluation strategies.

Two issues raised by Alwen and Blocki:

Can data-
dependence
help?

This paper: Scrypt is optimally memory hard

• Very first conjectured MHF: Proposed by
Colin Percival in 2009

• Used within PoWs in Litecoin

• Inspired the design of Argon2d – one of the
winners of Password Hashing Competition

• Covered by RFC 7914

Take home message:
Very first example of function
with provably optimal memory
hardness.

Finding such proof has been a surprisingly
hard problem:
• [Percival, 2009] is incorrect
• [ACKKPT16] only gave restricted result

+ it is practical, already in use, and relatively simple

No iMHF achieves optimal memory hardness

Roadmap

1. The Scrypt function
Definition, memory-hardness intuition, and
challenges

2. Optimal memory hardness of Scrypt

3. Conclusions

𝐇

𝐇

Core of Scrypt: ROMix

𝐇 𝑋1 𝑋2 𝑋𝑛−1 𝐵0𝑋0

𝐵0 𝐑𝐎𝐌𝐢𝐱 𝑋0

𝐶0 = 𝐵0 mod 𝑛

𝐵1

𝐶1 = 𝐵1 mod 𝑛

𝐇: A Salsa20 based “hash function”

with output length 𝒘.

𝑪𝟎 = 𝟐 𝑪𝟏 = 𝒏 − 𝟏

input

𝑛: a tunable parameter.
e.g., 𝑛 = 214, 𝑤 = 1 KB

Modeled as a random oracle!

𝐵2

𝐶2 𝐶𝑛−1

𝐇 𝐇 𝑋3 𝐇 𝑋𝑛−2

𝐇 𝐇 𝐵3

𝐶3

𝐇

𝐇

ROMix: Answering challenges

𝐶0, 𝐶1, … 𝐶𝑛−1unpredictable challenges:
1. Need to know 𝑋𝐶𝑗 to learn 𝐶𝑗+1
2. Need to answer all challenges to

complete the evaluation

Useful to
abstract
this!

challenge 𝑪𝟎 𝑪𝟏 = 𝑛 − 1 𝑪𝟐 revealed! 𝑪𝒏−𝟏 learnt after
answering all 𝑪𝒋

𝐇 𝑋1 𝑋2 𝑋𝑛−1 𝐵0𝑋0

𝐵0 𝐑𝐎𝐌𝐢𝐱 𝑋0𝐵1

𝑪𝟎 = 𝟐 𝑪𝟏 = 𝒏 − 𝟏

input

𝐵2

𝐇 𝐇 𝑋3 𝐇 𝑋𝑛−2 𝐇

𝐇 𝐇 𝐵3𝐇

𝑪𝟑

𝐇

𝐶𝑗 ⟵ {0,1,… , 𝑛 − 1}

𝑋𝐶𝑗

AdversaryChallenger

For all round 𝑗 = 0,… , 𝑛 − 1:

Abstraction: Round Game

𝐇

𝐶𝑗

𝑋0

Adversary’s goal: Reduce its own CMC for answering all challenges!

CMC = Cumulative Memory Complexity = σ𝑡=0
𝑇 Memory(𝑡)

𝐇 𝑋1 𝑋2 𝑋𝑛−1𝑋0
input

𝐇 𝐇 𝑋3 𝑋𝑛−2 𝐇

Abstract 2nd phase: challenges are 𝐇-dependent

𝐇 𝑋4

random!

Round game – Naïve strategy

Init:
Mem 0 ← 𝑋0
for 𝑖 = 1,… , 𝑛 do

Mem 𝑖 ← 𝐇(Mem 𝑖 − 1)

Upon challenge 𝐶𝑗: return Mem[𝐶𝑗]

M
e

m
o

ry

𝐶0 𝐶1

…

𝐶2 𝐶𝑛−1
Θ(𝑛)

Θ(𝑛 × 𝑤)

CMC = Ω(𝑛2𝑤)

𝐶𝑗

𝑋𝐶𝑗

For round 𝑗 = 0 to 𝑛 − 1 :

remember it!

Round game – Memory-less strategy

Upon challenge 𝐶𝑗:

𝑋 = 𝑋0
for 𝑖 = 1,… , 𝐶𝑗 do 𝑋 ← 𝐇(𝑋)

return 𝑋

Expected= Θ(𝑛)

CMC = Ω(𝑛2𝑤)

𝐶𝑗

𝑋𝐶𝑗

For round 𝑗 = 0 to 𝑛 − 1 :

M
e

m
o

ry

𝐶0 𝐶1
…

𝐶2 𝐶𝑛−1𝐶3

again!

M
e

m
o

ry

𝐶0 𝐶1 …𝐶2 𝐶𝑛−1𝐶3

M
e

m
o

ry

𝐶0𝐶1
…𝐶2 𝐶𝑛−1

Previous two strategies are special cases: consistent memory size

More general strategy: memory consumption can vary a lot
e.g., forget values, re-compute afterward

𝑪𝟏 𝑪𝟐

……

M
e

m
o

ry

𝑪𝟎

Time

Naïve strategy Memory-less strategyCMC = Ω(𝑛2𝑤) CMC = Ω(𝑛2𝑤)

Goal: prove CMC = Ω(𝑛2𝑤)!

large memory at the time
a challenge is revealed

reduce memory afterward

𝑇1

𝑇𝑖=time to answer
the 𝑖-th challenge

Memory hardness: intuition
M

e
m

o
ry

challenge 𝑪𝟐 𝑪𝟑

Intuition: Answering challenge fast requires large state!

Time

answer quickly ⇒
large initial state

small initial state
⇒ answer slowly

𝑪𝟒

Simplifying assumption: upon learning challenge 𝐶𝑗,

adversary only stores 𝑝 of the values 𝑋0, … , 𝑋𝑛−1

Single-shot memory-time trade-off

Fact: Avg-distance from 𝑋𝐶𝑗 to closest stored 𝑋𝑖 preceding 𝑋𝐶𝑗 is 𝑛/2𝑝

Expected time to answer the challenge is 𝑛/2𝑝

𝑋0
𝐇

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8 𝑋9

𝑛 = 10, 𝑝 = 3 𝐶𝑗

dist = 3

Regardless of parallelism, as computation of 𝑋-values is inherently sequential!

≈|memory|

stored

Three technical barriers:

1. Adversary stores arbitrary information
e.g., XOR of 𝑋𝑖 values, halves of 𝑋𝑖, reconstruct
information adaptively on challenges, etc.

2. Memory variation during computation
single-shot memory-time trade-off not enough!

3. 𝐇-dependent challenges, as opposed to
truly random

How to translate this intuition into a memory-
hardness proof for ROMix?

Focus on
𝟏 and 𝟐

[ACKKPT16] considered restricted strategies and exhibited
round games where general storing strategies can help!

[ACKKPT16] only shows CMC = Ω(
𝑛2𝑤

log2(𝑛)
)

see the paper!

Roadmap

1. The Scrypt function

2. Optimal memory hardness of Scrypt
Model, theorem, and proof approach

3. Conclusions

𝑆1 𝑆𝑇

The parallel random oracle model

𝐇

…𝑋0 𝑌

[Alwen and Serbinenko, STOC ’15]

ROMix(𝑋0)

At each step: Adv asks one batch of parallel 𝐇 queries
+ performs unbounded computation

Goal of adv: minimize CMC = σ𝑖=1
𝑇 |𝑆𝑖|

new stateinitial state

arbitrary
computation

𝑆2

𝐇

new state

arbitrary
computation

Main Theorem.

For any adversary A evaluating ROMix,

CMC(A) ≥
1

25
∙ 𝑛2 ∙ (𝑤 − 4 ⋅ log(𝑛))

w/ overwhelming probability over the choice of 𝐇.

The 4log(𝑛) loss is inherent in the proof.

Ω 𝑛2𝑤 clearly best possible for any
construction making 𝑛 queries to 𝐇.

Naïve strategy: Make 𝑛 calls, remember all outputs

Proof strategy: step 1

Memory-time trade-off ⇒ lower bound on memory
The memory-time trade-off holds true for adv storing 𝑋-values
even if the adv stores arbitrary information!

M
e

m
o

ry

challenge 𝑪𝒊 𝑪𝒊+𝟏

𝑇𝑖=time to answer the
𝑖-th challenge

Green (memory usage at this step)
is inversely proportional to orange (𝑇𝑖)

𝑇𝑖

≥ Ω(𝑛𝑤)

𝐴𝐇(, 𝐶)𝑍
𝑇 steps

recover 𝑋𝐶

𝑍: arbitrary computation on 𝐇-outputs
• E.g., pre-computation of 𝐇’s entries,

XOR of {𝑋𝑖} values, halves of 𝑋𝑖

Goal: Lower bound |𝑍|
as function of 𝑇 and 𝑛

Single-shot memory-time trade-off

state

[This result]: computation on 𝐇-outputs cannot help for Scrypt!

𝐶

𝐇 𝑋1 𝑋2 𝑋𝑛−1𝑋0
input

𝐇 𝐇 𝑋3 𝑋𝑛−2 𝐇𝐇 𝑋4

[ACKKPT16]: computation on 𝐇-outputs can help in some
round games

𝐶

𝑍
𝑇 steps

recover 𝑋𝐶𝐴𝐇(, 𝐶)

Lemma. For all 𝐴, for most 𝐇, if 𝑍 ≈ 𝑝𝑤 bits

Pr
𝐶

𝑇 >
𝑛

2𝑝
>
1

2

𝐶

𝐇 𝑋1 𝑋2 𝑋𝑛−1𝑋0
input

𝐇 𝐇 𝑋3 𝑋𝑛−2 𝐇𝐇 𝑋4

Single-shot memory-time trade-off

If adversary 𝐴𝐇(𝑍, 𝐶)
answers too fast for
most challenges 𝐶

Cannot be true for too many H: random oracle is incompressible
[Dwork, Naor and Wee, Crypto’05], [Alwen and Serbinenko, STOC ’15]

Lemma. For all 𝐴, for most 𝐇, if 𝑍 ≈ 𝑝𝑤 bits

Pr
𝐶

𝑇 >
𝑛

2𝑝
>
1

2

Proof idea:

Can compress the oracle
𝐇 using state 𝑍

𝐴𝐇(𝑍, 𝐶) can output or
query many 𝑋𝑖 values
w/o querying 𝐇 first

Technical barriers:

1. Adversary stores arbitrary information
Single-shot memory-time trade-off for arbitrary adv

2. Memory variation during computation

Single-shot
memory-time

trade-off

Optimal CMC
lower bound for
the round game

Proof strategy: step 2

Generalize

CMC lower bound
M

e
m

o
ry

𝑪𝟎 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 𝑪𝟓

Lemma. Pr
𝐶

𝑝 >
𝑛

2𝑇
>

1

2

when learning the 𝑖-th challenge

|memory| ≥
𝑛𝑤

2𝑇𝑖

𝑇𝑖=time to answer the 𝑖-th
challenge

CMC = ???

𝑇3 𝑇5𝑇1 𝑇4𝑇2

memory-time trade-off ⇒ memory lower bound
for the step right before the challenge is revealed

Time

General strategy

𝑇0

no lower bound
at this step

CMC lower bound
M

e
m

o
ry

𝑪𝟎 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 𝑪𝟓

Lemma. Pr
𝐶

𝑝 >
𝑛

2𝑇
>

1

2

Similar trade-off holds for every step before challenge is revealed

mem at every step ≥ funcs of 𝒏 and
time to answer the next challenge

𝑇𝑖=time to answer the 𝑖-th
challenge

𝑇2

General strategy

Time

Green inversely
proportional to
orange

CMC lower bound
M

e
m

o
ry

𝑪𝟎 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 𝑪𝟓

Lemma. Pr
𝐶

𝑝 >
𝑛

2𝑇
>

1

2

By adding lower bounds over rounds from 0 to 𝑛 − 1,
we have CMC = Ω(𝑛2𝑤)

During round 𝑖 − 1:

Sum of memory ≥
𝑛𝑤

2
ln 1 +

𝑇𝑖−1

𝑇𝑖

𝑇𝑖=time to answer the 𝑖-th
challenge

= Ω(𝑛2𝑤)

General strategy𝑖 = 2

𝑇1 𝑇2

Time

Roadmap

1. The Scrypt function

2. Optimal memory hardness of Scrypt

3. Conclusions

Summary

• Scrypt is maximally memory hard

– First optimal memory-hardness proof.

– Validates a practical MHF design.

• Open problem

– Optimal memory hardness proof for Argon2d?

Thank you! – Merci!
https://eprint.iacr.org/2016/989

