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 But black-box lower bounds
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We show that there must be a new way to get 

around some of known BB lower bounds.
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if    injective OWF f, then one of the following statements 

must be true:

2. The 4-round Feige-Shamir protocol is distributional 

concurrent ZK for OR-NP statements with small indist. gap. 

1. (infinitely-often)  PKE/KE exists. 

Specifically, we prove:

Proof idea. 

Given a magic adv V* that breaks the dist. CZK of  

Feige-Shamir, we construct PKE/KE from V*    

(based on injective OWF).
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 For any o(logn/loglogn)-round protocol 

(e.g. Feige-Shamir) ，there is a class C of 

concurrent verifiers for which BB simulator 

fails [CKPR01]：

 We observe that for every V ∈ C, there is a 

simulator that works well: 

(bb) S V ∈ C         

SVV ∈ C         

This reveals a gap 

between the 

universal simulation

and individual simulation

Natural security definitions only require 

the existence of reduction/simulation.
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 For any o(logn/loglogn)-round protocol 

(e.g. Feige-Shamir) ，there is a class C of 

concurrent verifiers for which BB simulator 

fails [CKPR01]：

 We observe that for every V ∈ C, there is a 

simulator that works well: 

(bb) S V ∈ C         

SVV ∈ C         

Any magic adv V* (not in  C ) that 

breaks CZK of Feige-Shamir (i.e., no 

efficient alg can simulate its view)   ?      
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Caveats:

 For the key gen algorithm of our encryption to work, we 

need a V*  that breaks epsilon-Distributional concurrent ZK;

 V* may output the first msg (a pair of images of f ) at its 

step i (and complete the corresponding WI proof) with some 

(non-negl) probability< 1, which will introduce some error 

to our encryption and decryption algs.

We use standard technique （parallel repetition）to reduce 

this kind of error.
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