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> No concrete attack;
> No security proof (under standard assumption) ;

> But black-box lower bounds

Impagliazzo and Rudich make
us feel less embarrassed

A few black box barriers have been bypassed ( e.g., Barak’s public
coin arguments)

But for most of them, it is unclear whether the BB lower bounds
are fundamental barriers.

We show that there must be a new way to get
around some of known BB lower bounds.
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» [DNS90] observed that FS may not be bbCZK;

» Impossible for BB simulation [CKPRO1];

» Generate a lone line of research [cLOS02, PRO3,
Lin03b, PROS, Pas04, Lin08, GGJ13, GGJS12, GGS15,
GLP+15...];

» Known constant-round CZK protocols rely
on much stronger assumption [CLP15,PPS15]



Specifically, we prove:

if Finjective OWF f, then one of the following statements
must be true:

1. (infinitely-often) PKE/KE exists.

2. The 4-round Feige-Shamir protocol is distributional
concurrent ZK for OR-NP statements with small indist. gap.

Proof idea.
Given a magic adv V* that breaks the dist. CZK of
Feige-Shamir, we construct PKE/KE from V*
(based on injective OWF).
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Any magic adv V' (not in () that
breaks CZK of Feige-Shamir (i.e., no
efficient alg can simulate its view) ?
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Actually, we prove that there are infinitely many n, for each n
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— pre-images” at a later time.

T.(hist, V") outputs one pre-image of (y,, y;)
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Caveats:

» For the key gen algorithm of our encryption to work, we
need a V* that breaks epsilon-Distributional concurrent ZK;

» V* may output the first msg (a pair of images of f) at its
step i (and complete the corresponding WI proof) with some
(non-negl) probability< 1, which will introduce some error
to our encryption and decryption algs.

We use standard technique (parallel repetition) to reduce
this kind of error.
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