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Motivation

Definition
(Computational-integrity1(CI))

The language of triples (M,X,T ) such
that: Nondeterministic machine M
accepts X, within at most T steps (T is
binary).

Goal: Practical CI system
implementation (POC)
Take home message: Practical
solutions without trusted-setup are
achievable

W

Prover Verifier
M(X,W) ⊢<T accept

1This problem also known as checking [BFLS91],certifying
[Mic00],delegating [GKR08],and verifying [GGP10] (computations).
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Our result

Today I will tell you about SCI:

• “Scalable Computational Integrity”

• First implementation2of a
theoretical construction that
achieves all of the below:

• Publicly verifiable
• No trusted-setup
• Universal
• Succinct verification

W

Prover Verifier
M(X,W) ⊢<T accept

2Proof-of-concept in C++
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Other approaches

• Designated-verifier/trusted-setup systems
[IKO07, GGPR13, PGHR13, BCG+13, BCG+14, CFH+15, . . . ]

• ,Tiny proofs (hundreds of bytes)
• ,Very efficient verification (milliseconds)
• /Designated-verifier. . .
• /. . . or require a trusted-setup

• Non-universal systems [GKR08, RRR16, . . . ]

• ,No cryptographic assumptions
• /Restricted class of programs

• Non-succinct systems [Gro11, GMO16, . . . ]3

• ,Efficient prover
• /Verification time ∼ program execution time

3
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• ,Very efficient verification (milliseconds)
• /Designated-verifier. . .
• /. . . or require a trusted-setup

• Non-universal systems [GKR08, RRR16, . . . ]
• ,No cryptographic assumptions
• /Restricted class of programs

• Non-succinct systems [Gro11, GMO16, . . . ]3

• ,Efficient prover
• /Verification time ∼ program execution time

3Succinct communication-complexity in [Gro11]
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Background

• Uses classical approach (PCP)
[BM88, GMR89, BFL91, BGKW88, FLS99, BFLS91, AS98,
ALM+92, Kil92, Mic00, . . . ]

• With recent asymptotic improvements
[BGH+05, BS08, BCS16]

• And concrete (non-asymptotic) constructions
[BCGT13, CA15]
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Cryptographic assumption

• Inner protocol (IOP[BCS16, RRR16]4):
• Provably sound5.

• Compilation to argument system:

• Using the random oracle model.
• Non-interactive using Fiat-Shamir heuristic.

• Implementation:

• Treating the hash-function as a random-oracle.

4also known as PCIP in [RRR16]

5Implementation uses security conjectures to improve concrete efficiency.
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Protocol overview (based on [Kil92])

1. Prover constructs a proof for the CI claim
• Proof is too big to be sent to verifier
• Only Merkle commitment is passed to verifier
• Interaction with verifier used to reduce load on prover

• Formalized in [BCGRS17], to be presented in ICALP 2017

• Time complexity Õ(T )

2. Verifier draws polylog (T ) random queries to proof, sends
them to prover

3. Prover answers queries
• Merkle paths added for integrity with commitment

4. Verifier decides whether to accept
• False-rejection impossible
• False-acceptance with probability < 2−80
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Low-degree testing definition (informal)

Prover

Verifier

I wonder if this polynomial is of

degree < 2n. Too bad my time

complexity is only poly (n) /

Of course it is low degree!

I don’t know you, why

would I trust you?

Don’t trust—Verify! Here

is a proof oracle! (PCPP)
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Low-degree testing

• Low-degree testing is common in
classical CI solutions

• SCI is the first system
implementing succinct low-degree
testing

• Based on [BS08]

• In contrast: Trusted-setup systems
use public-key cryptography that
enforces low-degree polynomials

• Using homomorphic encryption

⋰ ⋮ ⋱ ⋰ ⋮ ⋱
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Low-degree testing — the [BS08] test
The [BS08] test:
Prover algorithm:

• Given a candidate f ∶ F→ F
claimed to be of degree d

• The prover constructs
Q ∶ F × F→ F s.t.

degx(Q),degy(Q) <
√

d ⇐⇒ deg(f ) < d

• Repeated recursively for Q’s
restrictions to rows and columns

• Until degree small enough
• Resulting in a proofs-tree

Verifier algorithm:
Verifier tests a small random fraction of
leafs and consistency over their paths to
the root

⋰ ⋮ ⋱ ⋰ ⋮ ⋱
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Low-degree testing — the [BS08] test

• Observation: most subproofs never
accessed by verifier

• In the PCP model, queries are not
known in advance, thus prover
must construct the entire
proofs-tree

• Results in proof size Ω(2n
⋅ n)

• Problem: too expensive for
practical implementations

⋰ ⋮ ⋱ ⋰ ⋮ ⋱
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Low-degree testing — SCI solution

• SCI solves the problem by
interaction

• The verifier guides the prover to
construct subproofs only if accessed

• In our construction prover learns a
subproof is accessed only after it’s
path to root is unchangeable

• Soundness preserved
• Proof length reduced to O(2n

)

• Formal method description in
[BCGRS17] (ICALP)

⋰ ⋮ ⋱ ⋰ ⋮ ⋱
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Benchmark — Subset Sum

• CI claim:“no nonempty subset of a⃗
sums to 0”

• co-NP hard problem

• Two implementations in
TinyRAM6:

• Exhaustive:Θ(2n
)-time, no RAM

• Sorting:Θ(2n/2
) time and space

• RAM usage increases proof by
×2 log(exec-length) = O(n)

Prover

a1, a2, . . . , an ∈ N

Verifier
No subset sums to 0

6Turing-complete assembly.
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Machine specifications:
Prover: CPU: 4 X AMD Opteron(tm) Processor 6328 (32 cores total, 3.2GHz), RAM: 512GB
Verifier: CPU: Intel(R) Core(TM) i7-4600 2.1GHz, RAM: 12GB, Circuit: runtime simulated for long inputs
Security: Security level: 80 bits (Probability of cheating < 2−80)
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1min

10min
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3hr

6hr

12hr

Array length

Prover time

Exhaustive
Sorted

0 5 10 15
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16GB

64GB
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Array length

Proof size

Exhaustive
Sorted
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Prover overhead (multiplicative)
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Conclusions: Prover asymptotic behaviour as predicted;
Proving is ∼ ×109 slower than program execution

0 10 20 30 40
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Array length

Verification time

Exhaustive
Sorted

0 10 20 30 40
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Array length

Query complexity
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Sorted
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101

Array length

Verification speedup (multiplicative)

Exhaustive
Sorted

Conclusions: Verifier asymptotic behaviour as predicted;
Succinct only for very long program executions
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Comparison to other approaches

Machine specifications:
CPU: 4 X AMD Opteron(tm) Processor 6328 (32 cores total, 3.2GHz), RAM: 512GB
Benchmark:
Executing subset-sum solver for 64K TinyRAM steps (9 elements - exhaustive algorithm).

Prover
(Mins)

Verifier
(mSec)
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Highlights: competitive prover;
Verification succinct but slow;
Communication succinct but high

• SCI - our system.

• KOE[BCG+13] - zkSNARK based on
Knowledge Of Exponent hardness.
Non-succinct setup required.

• IVC[BCTV14] - Incrementally
Verifiable Computation based on
KOE. Setup required (succinct).

• DLP[Gro11] - Publicly-verifiable
succinct CC but non-succinct
verification. Based on hardness of
DLOG7.

• Follow-up (in-progress) [BBHR17]

• Same approach as SCI
• Guaranties privacy (ZK)
• Introduces new theory

• Prover overhead ∼ ×106

• Practical succinctness
in-reach

7Extrapolated from [Gro11, Table 2]
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SCI Introduction:
W

Prover Verifier
M(X,W) ⊢<T accept
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