Projective Arithmetic Functional Encryption
and

Indistinguishability Obfuscation (10) from
Degree-5 Multilinear maps

Prabhanjan Ananth Amit Sahai

ree | Centerfor Encrypted
“EF/  Functionalities




Constructions of 10

All current constructions of 10 are based on

multilinear maps

| GGHRSW13, BR14, BGKPS14, PST14, AGIS14, ..., AB15, Zim15,
GLSW15, GMMSZ16, Lin16a, LV16, Lin16b, ...]

Multilinear maps: generalization of bilinear maps

Degree-D multilinear maps: can compute degree-D
polynomials in the exponents of the group



What 1s the minimum degree of multilinear

maps required to construct 10?

Ideal Goal:
2

I

32 large poly(k)
[LV*16] constant
[Lin’16]

Original works [GGHRSW’13, BGKPS'14, ...]:
degree = polynomial in security parameter

Lin’16: degree = constant

LV’16: degree = 32



This Work

10 from degree-5 multinear maps

Ideal Goal:
2

32 large oly(k,[C])
5 [LV’16] constant poly(k,|C|

[Lin’16]

A new template to construct 10 from constant degree
multilinear maps



Prior Works [Lin’16,LV'16]

Collusion-Resistant

Consl‘\[/?lrlllt Dsegree mesll- | Functional Encryption | s i0
b for boolean circuits




Prior Works [Lin’16,LV'16]

Collusion-Resistant

Consl‘\[/?lrllltaDSegree w=»>-| Functional Encryption
P for boolean circuits

- MMap computations performed over large fields

- To construct FE from mmaps: need to “arithmetize” the boolean circuits



Our Template

g - —

Constant Degree
Mmaps

PrBj ective Arithmetic
FE
for arithmetic circuits

10

- PAFE is a version of functional encryption for arithmetic circuits




Our Template (in detail)

Projective Arithmetic
FE for
Degree-D
polynomials
(subexp. secure)

Degree-D

Multilinear maps
(subexp. secure)

+
degree-D
randomizing
polynomials

o GI)N [BNPW16, LPST15, AJ15, BV15]
Sub-linear ﬁ
FE for P

@I Zaligdl  + sub-exponential LWE




Instantiation

10
Projective Arithmetic from
Degree-5 FE for degree-5

Multilinear maps Degree-5 multilinear

(subexp. secure) A
= polynomials maps!

(subexp. secure)

+

degree-5
randomizing
polynomials

(assumes
degree-5 PRGs

with poly stretch) C{egad )R [BNPW16, LPST15, AJ15, BVi5]

Sub-linear ﬁ
FE for P

@I Zaligdl  + sub-exponential LWE




Degree-5

Multilinear maps
(subexp. secure)

Instantiation

1(0)
Projective Arithmetic e
FE fOI' degree_s
Degree-5 multilinear
polynomials maps!
(subexp. secure)

+

d CONCURRENT WORK:
egree.—5 Lin’17 built 1O assuming
rafidOmlz.Hig joint SXDH on degree-5 mmaps
polynomials
(assumes
vv?te};g;?)el;f5sfr%’§i) GO0 G [BNPW16, LPST15, AJ15, BV15]

Sub-linear ﬁ ‘
FE for P -

@I Zaligdl  + sub-exponential LWE




Technical Overview



Our Template

Projective Arithmetic
FE for

Degree-D
polynomials
(subexp. secure)

+
degree-
randomizing
polynomials



Projective Arithmetic FE
(PAFE)

« FIRST ATTEMPT:

Same syntax as FE for boolean circuits except
that functional keys issued for polynomials (over large fields)

Encryption of x + Key of polynomial p := p(x)

ISSUE: Current techniques are a limiting factor!
If p(x) is large, we don’t know how to construct this notion

Reason: Decryption in existing FE schemes yields Encoding(p(x))
and can decode only if p(x) is small



Projective Arithmetic FE
(PAFE)

P Pz P3
Key
Generation
X
skpi skp- skps
Encryption
Enc(x) + + +
Projective
Decrypt

ENCODINGS:

Can recover linear function of (p:(x),p=(x),ps(x),...)
if output of linear function is “small”



Efficiency

- Linear Overhead:
- Size of encryption of y := |y| poly(k,D)

D - degree of polynomials

Security

- Semi-functional security:
- Inspired by ABE literature [Wato9,LOS+10,...,GGHZ14]

- Captures a weak form of function hiding



Our Template

Projective Arithmetic
FE for

Degree-D
polynomials
(subexp. secure)

+
degree-D
randomizing
polynomials

(Secret Key)
Sub-linear

FE for P

(subexp. secure)




Sub-linear (Secret Key) FE

for Boolean circuits

SUB-LINEARITY

|[Enc(x)| = |C|¢ poly(k,|x|) ; e <1




Randomizing Polynomials

If all pi is of degree D then
it is a degree-D randomizing polynomial




Construction of Sub-linear FE

Key Generation of C:

Randomizing

Polynomial of C

PAFE key l l l

generation of
DPi1,...,DN

Skp1 Skp2 eoe SkpN

Functional key of C = (sky., ..., skyn)



Construction of Sub-linear FE

Key Generation of C: C
D1 D2 coe DN
l | l

Skp1 Skp2 (XX SkpN

Encryption of x:

x — (x,r)



Construction of Sub-linear FE

Key Generation of C: C

SUB-LINEARITY PROPERTY
of randomizing polynomials:

|r| is sublinear in
the length of circuit description




Construction of Sub-linear FE

Decryption (INTUITION):

Execute PAFE ProjectiveDecrypt
Execute Recover to obtain encoding of (C,x)

Execute the decoding procedure



Instantiation of degree-5

randomizing polynomials
(with sub-linearity property)

WARMUP:

Consider degree-3 randomizing polynomials
|AIK’06] (without sub-linearity property)

Compress randomness using PRGs!

Use degree 5 PRGs
(maps seed of length n to n*49)

TOTAL DEGREE =5+3 = 15



Instantiation of degree-5

randomizing polynomials
(with sub-linearity property)

WARMUP:
Goldreich PRG candidate:
Analysed by O’Donnell and Witmer'14

Consider degre¢
|ATIK’06] (without S&

Compress randomnegétising PRGs!

Use degree 5 PRGs
(maps seed of length n to n*49)

TOTAL DEGREE =5+3 = 15



Instantiation of degree-5

randomizing polynomials
(with sub-linearity property)

WARMUP:

Degree-5 randomizing polynomials:

We use pre-processing trick!
(pre-compute some partial terms ahead of time)

TOTAL DEGREE =5+3 = 15



Our Template

Projective Arithmetic
FE for
Degree-D
polynomials
(subexp. secure)

Degree-D

Multilinear maps
(subexp. secure)




Slotted Encodings

An abstraction of composite order multi-linear maps

Encoding of (a,b,c) w.r.t color: _
Addition v..t same color: [T -+ (TRl - [

Multiplication w.r.t _ _
“compatible” colors: - * - —

Zero Test w.r.t - is ZERO if and only if a+b+c=0

color red:



Degree-D Slotted Encodings
from
Degree-D Prime order mmap

Degree-D slotted encodings: if it allows for evaluating polynomials
of degree at most D

SIMPLE CASE: Degree=2

‘&1 b1 01‘ ‘3.2 b2 Co




Degree-D Slotted Encodings
from
Degree-D Prime order mmap

Degree-D slotted encodings: if it allows for evaluating polynomials
of degree at most D

SIMPLE CASE: Degree=2

Pick vectors Uz, U2, Uz, U1, U2, U3

‘ au; + bius + ciug ‘ ‘ a2V1 + bav2 + Cov3 ‘
b

such that <u;,vj> =1, if i=]
= 0, otherwise



Degree-D Slotted Encodings
from
Degree-D Prime order mmap

Degree-D slotted encodings: if it allows for evaluating polynomials
of degree at most D

SIMPLE CASE: Degree=2

Pick vectors Uz, U2, Uz, U1, U2, U3

J _

such that <u;,vj> =1, if i=)
= 0, otherwise




Degree-D Slotted Encodings
from
Degree-D Prime order mmap

Degree-D slotted encodings: if it allows for evaluating polynomials
of degree at most D

SIMPLE CASE: Degree=2




Degree-D Slotted Encodings
from
Degree-D Prime order mmap

Higher (constant) degrees: tensoring of dual vector spaces

Example: Degree=3

< [awvan +bavats + cavgus |, [awi+bavs + ey | >
[t bbavs+ ccavy |



Construction of PAFE
(Intuition)

Setup: Pick Ry,...,Rn

Encryption of x:

6] ERE] - [EE

Key Generation of polynomial p:

p. o [pRyR). o0 ]

WHY IS IT SECURE?

pP(Ry,...,Rn) in second slot “forces”
homomorphic evaluation of p on ciphertext encodings



Construction of PAFE
(Intuition)

Setup: Pick Ry,...,Rn

Encryption of x:

Key Generation of polynomial p:

p. o [k o |

MAIN ISSUE: Mix-and-match attacks
encodings from different ciphertexts can be mixed



Construction of PAFE
(Intuition)

Setup: Pick Ry,...,Rn

Encryption of x:

Key Generation of polynomial p:

Prevented by having
P “ciphertext-specific" checks!

MAIN ISSUE: Mix-and-match attacks
encodings from different ciphertexts can be mixed



Conclusions

- A new template for 10 from degree-5 multilinear
maps.

- [Lin-Tessaro’17]: iO from degree-3
multilinear maps

- [Lin-Tessaro’17]: Show degree-D block-wise
local PRGs + degree-D mmaps imply 10



Future Directions

- Explore notions of degree-2 PRGs that suffice to
construct 10

+ This would yield 10 from bilinear maps

- Negative Results on degree-2 PRGs
| BBKK’17, LV’'17]









