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Constructions of iO

All current constructions of iO are based on 
multilinear maps                                                                                    

[GGHRSW13, BR14, BGKPS14, PST14, AGIS14, …, AB15, Zim15, 
GLSW15, GMMSZ16, Lin16a, LV16, Lin16b, …] 

• Multilinear maps: generalization of bilinear maps 

• Degree-D multilinear maps: can compute degree-D 
polynomials in the exponents of the group



• Original works [GGHRSW’13, BGKPS’14, …]:                                           
degree = polynomial in security parameter 

• Lin’16: degree = constant 

• LV’16: degree = 32

What is the minimum degree of multilinear 
maps required to construct iO?

poly(k)large  
constant 
[Lin’16]

32 
[LV’16]

Ideal Goal:  
2



This Work

iO from degree-5 multinear maps

A new template to construct iO from constant degree 
multilinear maps

poly(k,|C|)large  
constant 
[Lin’16]

32 
[LV’16]5

Ideal Goal:  
2



Prior Works [Lin’16,LV’16]

Constant Degree 
Mmaps

Collusion-Resistant 
Functional Encryption 

for boolean circuits
iO



Prior Works [Lin’16,LV’16]

Constant Degree 
Mmaps

Collusion-Resistant 
Functional Encryption 

for boolean circuits
iO

- MMap computations performed over large fields 

- To construct FE from mmaps: need to “arithmetize” the boolean circuits



Our Template

Constant Degree 
Mmaps

Projective Arithmetic 
FE 

for arithmetic circuits
iO

- PAFE is a version of functional encryption for arithmetic circuits



Our Template (in detail)

Degree-D 
Multilinear maps 

(subexp. secure)

Projective Arithmetic 
FE for 

Degree-D 
polynomials 

(subexp. secure)

(Secret Key) 
Sub-linear 

FE for P 
(subexp. secure)

iO

+  
degree-D 

randomizing 
polynomials

[BNPW16, LPST15, AJ15, BV15]

+ sub-exponential LWE



Instantiation

Degree-5 
Multilinear maps 

(subexp. secure)

Projective Arithmetic 
FE for 

Degree-5 
polynomials 

(subexp. secure)

(Secret Key) 
Sub-linear 

FE for P 
(subexp. secure)

iO

+  
degree-5 

randomizing 
polynomials

[BNPW16, LPST15, AJ15, BV15]

+ sub-exponential LWE

iO  
from  

degree-5 
multilinear 

maps!

(assumes 
degree-5 PRGs 

with poly stretch)



Instantiation

Degree-5 
Multilinear maps 

(subexp. secure)

Projective Arithmetic 
FE for 

Degree-5 
polynomials 

(subexp. secure)

(Secret Key) 
Sub-linear 

FE for P 
(subexp. secure)

iO

+  
degree-5 

randomizing 
polynomials

[BNPW16, LPST15, AJ15, BV15]

+ sub-exponential LWE

iO  
from  

degree-5 
multilinear 

maps!

CONCURRENT WORK: 
Lin’17 built iO assuming 

joint SXDH on degree-5 mmaps

(assumes 
degree-5 PRGs 

with poly stretch)



Technical Overview



Projective Arithmetic 
FE for 

Degree-D 
polynomials 

(subexp. secure)

Degree-D 
Multilinear maps 

(subexp. secure)

(Secret Key) 
Sub-linear 

FE for P 
(subexp. secure)

iO

+  
degree-

randomizing 
polynomials

[BNPW16, LPST15, AJ15, BV15]

+ sub-exponential LWE

Our Template



Projective Arithmetic FE 
(PAFE)

• FIRST ATTEMPT:

Same syntax as FE for boolean circuits except 
that functional keys issued for polynomials (over large fields)

Encryption of x + Key of polynomial p := p(x)

ISSUE: Current techniques are a limiting factor! 

- If p(x) is large, we don’t know how to construct this notion 

- Reason: Decryption in existing FE schemes yields Encoding(p(x)) 
and can decode only if p(x) is small



Projective Arithmetic FE 
(PAFE)

skp1

…Enc(x) +

p1

x

p1(x)

skp2 skp3

+ +

p2 p3

p2(x) p3(x)ENCODINGS:

Can recover linear function of (p1(x),p2(x),p3(x),…)  
if output of linear function is “small”

Encryption

Key 
Generation

Projective  
Decrypt



Efficiency
• Linear Overhead:  

• Size of encryption of y := |y| poly(k,D) 

           D - degree of polynomials

Security
• Semi-functional security: 

• Inspired by ABE literature [Wat09,LOS+10,…,GGHZ14] 

• Captures a weak form of function hiding



Projective Arithmetic 
FE for 

Degree-D 
polynomials 

(subexp. secure)

Degree-D 
Multilinear maps 

(subexp. secure)

(Secret Key) 
Sub-linear 

FE for P 
(subexp. secure)

iO

+  
degree-D 

randomizing 
polynomials

[BNPW16, LPST15, AJ15, BV15]

+ sub-exponential LWE

Our Template



Sub-linear (Secret Key) FE  
for Boolean circuits

SUB-LINEARITY 

|Enc(x)| = |C|e poly(k,|x|)  ;  e <1



Randomizing Polynomials
C

(x, r) + + +…

p2(x,r) pN(x,r)p1(x,r) ……+ + = C(x)

If all pi is of degree D then  
it is a degree-D randomizing polynomial

p1 p2 pN…
Encode

Decode



Construction of Sub-linear FE
Key Generation of C:

p1 p2 pN

C

…

Randomizing 
Polynomial of C

skp1 skp2 skpN

PAFE key 
generation of  

p1,…,pN

…

Functional key of C = (skp1 , … , skpN)



Construction of Sub-linear FE
C

p1 p2 pN

Key Generation of C:

…

skp1 skp2 skpN…

Encryption of x:

x (x, r)
r



Construction of Sub-linear FE

p1 p2 pN

CKey Generation of C:

…

skp1 skp2 skpN…

Encryption of x:

x (x, r)
r

SUB-LINEARITY PROPERTY 
of randomizing polynomials: 

|r| is sublinear in  
the length of circuit description 



Decryption (INTUITION):

- Execute PAFE ProjectiveDecrypt 
- Execute Recover to obtain encoding of (C,x) 
- Execute the decoding procedure

Construction of Sub-linear FE



WARMUP: 

- Consider degree-3 randomizing polynomials 
[AIK’06] (without sub-linearity property) 

- Compress randomness using PRGs! 
- Use degree 5 PRGs                              

(maps seed of length n to n1.49) 

TOTAL DEGREE = 5 * 3 = 15

Instantiation of degree-5 
randomizing polynomials 

(with sub-linearity property)



WARMUP: 

- Consider degree-3 randomizing polynomials 
[AIK’06] (without sub-linearity property) 

- Compress randomness using PRGs! 
- Use degree 5 PRGs                              

(maps seed of length n to n1.49) 

TOTAL DEGREE = 5 * 3 = 15

Instantiation of degree-5 
randomizing polynomials 

(with sub-linearity property)

Goldreich PRG candidate:  
Analysed by O’Donnell and Witmer'14 



WARMUP: 

- Consider degree-3 randomizing polynomials 
[AIK’06] (without sub-linearity property) 

- Compress randomness using PRGs! 
- Use degree 5 PRGs                               

(maps seed of length n to n1.49) 

TOTAL DEGREE = 5 * 3 = 15

Instantiation of degree-5 
randomizing polynomials 

(with sub-linearity property)

Degree-5 randomizing polynomials: 

We use pre-processing trick!  
(pre-compute some partial terms ahead of time)



Projective Arithmetic 
FE for 

Degree-D 
polynomials 

(subexp. secure)

Degree-D 
Multilinear maps 

(subexp. secure)

(Secret Key) 
Sub-linear 

FE for P 
(subexp. secure)

iO

+  
degree-

randomizing 
polynomials

[BNPW16, LPST15, AJ15, BV15]

+ sub-exponential LWE

Our Template



Slotted Encodings
An abstraction of composite order multi-linear maps

a b cEncoding of (a,b,c) w.r.t color:

Addition w.r.t same color: a1 b1 c1 a2 b2 c2 a1+a2 b1+b2 c1+c2+ =

Multiplication w.r.t  
“compatible” colors: a1 b1 c1 a2 b2 c2* = a1*a2 b1*b2 c1*c2

Zero Test w.r.t  
color red: is ZERO if and only if a+b+c=0a b c



Degree-D Slotted Encodings  
from  

Degree-D Prime order mmap

Degree-D slotted encodings: if it allows for evaluating polynomials 
of degree at most D

SIMPLE CASE: Degree=2

a1 b1 c1 a2 b2 c2,



Degree-D Slotted Encodings  
from  

Degree-D Prime order mmap

a1u1 + b1u2 + c1u3 a2v1 + b2v2 + c2v3,

such that <ui,vj> = 1, if i=j 
                                 = 0, otherwise

SIMPLE CASE: Degree=2

Degree-D slotted encodings: if it allows for evaluating polynomials 
of degree at most D

Pick vectors u1, u2, u3, v1, v2, v3



Degree-D Slotted Encodings  
from  

Degree-D Prime order mmap

a1u1 + b1u2 + c1u3 a2v1 + b2v2 + c2v3,

such that <ui,vj> = 1, if i=j 
                                 = 0, otherwise

SIMPLE CASE: Degree=2

Dual  

vector spaces! 

[OT08,OT09,BJK15]

Degree-D slotted encodings: if it allows for evaluating polynomials 
of degree at most D

Pick vectors u1, u2, u3, v1, v2, v3



Degree-D Slotted Encodings  
from  

Degree-D Prime order mmap

a1u1 + b1u2 + c1u3 a2v1 + b2v2 + c2v3

SIMPLE CASE: Degree=2

,

= a1a2 + b1b2 + c1c2

< >

Degree-D slotted encodings: if it allows for evaluating polynomials 
of degree at most D



Degree-D Slotted Encodings  
from  

Degree-D Prime order mmap

Higher (constant) degrees: tensoring of  dual vector spaces

Example: Degree=3

=

a1w1u1 + b1w2u2 + c1w3u3 a2v1 + b2v2 + c2v3,< >

a1a2w1 + b1b2w2 + c1c2w3 …,



Construction of PAFE 
(Intuition)

x2 R2 0x1 R1 0 xn Rn 0…

Encryption of x:

Setup: Pick R1,…,Rn

WHY IS IT SECURE? 
p(R1,…,Rn) in second slot “forces” 

homomorphic evaluation of p on ciphertext encodings

0 p(R1,…,Rn) 0

Key Generation of polynomial p:

p ,



Construction of PAFE 
(Intuition)

Setup:

Encryption of x:

Key Generation of polynomial p:

MAIN ISSUE: Mix-and-match attacks 
encodings from different ciphertexts can be mixed

x2 R2 0x1 R1 0 xn Rn 0…

0 p(R1,…,Rn) 0

Pick R1,…,Rn

p ,



Construction of PAFE 
(Intuition)

Setup:

Encryption of x:

Key Generation of polynomial p:

MAIN ISSUE: Mix-and-match attacks 
encodings from different ciphertexts can be mixed

x2 R2 0x1 R1 0 xn Rn 0…

0 p(R1,…,Rn) 0

Pick R1,…,Rn

Prevented by having  
“ciphertext-specific" checks!p ,



Conclusions

• A new template for iO from degree-5 multilinear 
maps. 

• [Lin-Tessaro’17]: iO from degree-3 
multilinear maps  

• [Lin-Tessaro’17]: Show degree-D block-wise 
local PRGs + degree-D mmaps imply iO



Future Directions

• Explore notions of degree-2 PRGs that suffice to 
construct iO 

• This would yield iO from bilinear maps 

• Negative Results on degree-2 PRGs 
[BBKK’17, LV’17]






