Formal Abstractions for Attested Execution Secure Processors

Eurocrypt May 1st, 2017

Rafael Pass, Elaine Shi, Florian Tramèr

- "Minimal" trusted hardware to circumvent theoretical impossibilities
- Little concern about practical performance

- Trusted execution of "general-purpose" userdefined progs
- Cost-effectiveness, reusability, expressivity

Architecture community converged on "attested execution"

Architecture community converged on "attested execution"

What is **"attested** execution" ?

What can it (not) express?

Why Ideal Abstractions?

Why Ideal Abstractions?

 Formal security proofs for implementations from precise abstractions and security models

Why Ideal Abstractions?

 Formal security proofs for implementations from precise abstractions and security models

• Ultimate Goal: Formally verified processor implementing this formal abstraction

Model G_{att} as global ideal functionality [CDPW'07]

Model G_{att} as *global* ideal functionality [CDPW'07]

Attestation key is *shared* across protocols

Model G_{att} as global ideal functionality [CDPW'07]

Model G_{att} as *global* ideal functionality [CDPW'07]

Example of concrete security issue:

Non-deniability for parties in reg

The more interesting question

What is "attested execution" ?

What can it (not) express?

Powerful Abstraction!

Powerful Abstraction!

G_{att} → "Stateful Obfuscation"
Impossible even with stateless tokens and cryptographic obfuscation

The surprise

Powerful Abstraction!

G_{att} → "Stateful Obfuscation"
Impossible even with stateless tokens and cryptographic obfuscation

UC-Secure MPC?

Powerful Abstraction!

G_{att} → "Stateful Obfuscation"
Impossible even with stateless tokens and cryptographic obfuscation

UC-Secure MPC?

It's Complicated

Powerful Abstraction!

G_{att} → "Stateful Obfuscation" Impossible even with stateless tokens and cryptographic obfuscation

UC-Secure MPC?

It's Complicated

Consider 2PC

UC-secure 2PC possible if both parties have trusted hardware

UC-secure 2PC possible if both parties have trusted hardware

Impossible if only one party has trusted hardware!

This is counter-intuitive.

Impossible if only one party has trusted hardware!

Issue: non-deniability

Issue: non-deniability

Convinced that some honest party in the registry participated in the protocol

Non-issue if all nodes have trusted hardware or if pk isn't global

Convinced that some honest party in the registry participated in the protocol

Extra setup assumption: Augmented CRS

Extra setup assumption: Augmented CRS

UC-Secure MPC with O(1) crypto operations

Extra setup assumption: Augmented CRS

UC-Secure MPC with O(1) crypto operations

Backdoor enclave program: allow simulator to extract inputs and program the outputs for corrupt parties

Fair 2PC

• Fairness impossible for general functionalities in plain model [Cleve86]

Fair 2PC

Can trusted hardware help with fairness?

 Fairness impossible for general functionalities in plain model [Cleve86]

Fair 2PC

Enhanced model: Clock-aware secure processor

Enhanced model: Clock-aware secure processor

 Fair 2PC possible if both parties have clockaware secure processors

Enhanced model: Clock-aware secure processor

- Fair 2PC possible if both parties have clockaware secure processors
- Fair coin-tossing possible if one party has clockaware secure processors (+ ACRS)

Enhanced model: Clock-aware secure processor

- Fair 2PC possible if both parties have clockaware secure processors
- Fair coin-tossing possible if one party has clockaware secure processors (+ ACRS)

Enclaves establish secure channel

Enclaves exchange inputs and compute outputs

"Will release to Alice in 2^{λ} time"

"Will release to Bob in 2^{\lambda} time"

If Alice learns result at time **t < 2^λ**, Bob will learn it at the latest by time **2t**

+ no "wasted" computation!

"Will release to Alice in 2^{λ-1} time"

"Will release to Bob in $2^{\lambda-1}$ time"

Formal abstractions of trusted hw

Attested execution is a powerful assumption

⇒ Stateful Obfuscation, Efficient MPC, Fair 2PC

Formal abstractions of trusted hw

Attested execution is a powerful assumption

⇒ Stateful Obfuscation, Efficient MPC, Fair 2PC

Subtle issues unless all parties have trusted hardware

⇒ Non-deniability, Extra setup assumptions

Formal abstractions of trusted hw

Attested execution is a powerful assumption

⇒ Stateful Obfuscation, Efficient MPC, Fair 2PC

Subtle issues unless all parties have trusted hardware \Rightarrow Non-deniability, Extra setup assumptions

Formal abstractions of trusted hw Formally verified secure processor design

Attested execution is a powerful assumption

⇒ Stateful Obfuscation, Efficient MPC, Fair 2PC

Subtle issues unless all parties have trusted hardware \Rightarrow Non-deniability, Extra setup assumptions

Thank You

