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Crypto Architecture
Systems

& Security

• “Minimal” trusted
hardware to circumvent 
theoretical impossibilities

• Little concern about
practical performance

• Trusted execution of 
“general-purpose” user-
defined progs

• Cost-effectiveness,
reusability, expressivity
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TPM

Bastion

Sanctum

Ascend

XOM

Aegis

Iso-X

Phantom

GhostRider

Academia Industry

Architecture community converged on 
“attested execution”
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Client

Server

Verify

Enclave

Manufacturer

Sign

Compute prog on inp

outp,  σ

Attestation that outp
is correctly computed 
from prog and inp
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• Formal security proofs for implementations 
from precise abstractions and security models

• Ultimate Goal: Formally verified processor 
implementing this formal abstraction

Why Ideal Abstractions?
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𝓖att[Σ, reg]

init(): , ⟵ Σ.KeyGen(1λ)

getpk() from P: send to P 

install(prog, sid) from P ∊ reg:

resume(eid, inp) from P ∊ reg:
(out, M’) = prog(inp, M)

σ = Σ.Sign( , eid, sid, prog, out)

send (out, σ) to P

Signature scheme Registry of all platforms with trusted hardware 

(eid, P) ( sid, prog, M )

enclave id
(nonce)

enclave 
memory

… …

’
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Model 𝓖att as global ideal functionality [CDPW’07]

𝓖att[Σ, reg]

Attestation key is shared across protocols
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Composability with Global State

Model 𝓖att as global ideal functionality [CDPW’07]

σ

𝓖att[Σ, reg]

Example of concrete security issue:

Non-deniability for parties in reg
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Impossible if only one party has 
trusted hardware!

Consider 2PC

This is counter-intuitive.
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under global pk

Convinced that 
some honest party in the registry

participated in the protocol

Non-issue if all nodes have trusted hardware 
or if pk isn’t global
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Extra setup assumption: Augmented CRS

Backdoor enclave program: allow simulator 
to extract inputs and program the outputs 

for corrupt parties

UC-Secure MPC with O(1) crypto operations
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What if we really really want to 
use a single trusted processor?

19

prog[f,𝓖acrs,𝒫1 … 𝒫n]

1. Generate pki,ski

1. Collect all inpi

2. Compute outp*

Key-exchange
𝒫i

pki, σ

Encrypted inpi

Encrypted outpi

Full protocol replaces σ
by a WI-Proof
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What if we really really want to 
use a single trusted processor?

20

prog[f,𝓖acrs,𝒫1 … 𝒫n]

3. Trapdoors

check(𝒢acrs, 𝒫i, idi)

set outpi = v

Sim

equivocate(idi, v)



21

Fair 2PC?



21

Fair 2PC?

• Fairness impossible for general 
functionalities in plain model [Cleve86]



21

Fair 2PC?

• Fairness impossible for general 
functionalities in plain model [Cleve86]

Can trusted hardware help with fairness?
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Enhanced model: Clock-aware secure processor 

• Fair 2PC possible if both parties have clock-
aware secure processors

• Fair coin-tossing possible if one party has clock-
aware secure processors (+ ACRS)
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UC-Secure Fair 2PC

Enhanced model: Clock-aware secure processor 

• Fair 2PC possible if both parties have clock-
aware secure processors

•
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Enclaves establish secure channel

“Will release to Alice in 2λ-1 time” “Will release to Bob in 2λ-1 time”

… 

If Alice learns result at time t < 2λ, 
Bob will learn it at the latest by time 2t

+ no ‘’wasted’’ computation!
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design

Secure implementations 
from formally secure 

abstractions


