
Formal Abstractions for Attested
Execution Secure Processors

Eurocrypt

May 1st, 2017

Rafael Pass, Elaine Shi, Florian Tramèr

Trusted hardware:
Different communities, different world views

2

Trusted hardware:
Different communities, different world views

Crypto Architecture
Systems

& Security

2

Trusted hardware:
Different communities, different world views

Crypto Architecture
Systems

& Security

• “Minimal” trusted
hardware to circumvent
theoretical impossibilities

• Little concern about
practical performance

2

Trusted hardware:
Different communities, different world views

Crypto Architecture
Systems

& Security

• “Minimal” trusted
hardware to circumvent
theoretical impossibilities

• Little concern about
practical performance

• Trusted execution of
“general-purpose” user-
defined progs

• Cost-effectiveness,
reusability, expressivity

2

3

TPM

Bastion

Sanctum

Ascend

XOM

Aegis

Iso-X

Phantom

GhostRider

Academia Industry

Architecture community converged on
“attested execution”

4

Architecture community converged on
“attested execution”

Attested Execution

5

Client

Server

Compute prog on inp

Attested Execution

5

Client

Server

EnclaveCompute prog on inp

Attested Execution

5

Client

Server

Verify

Enclave

Manufacturer

Sign

Compute prog on inp

Attested Execution

5

Client

Server

Verify

Enclave

Manufacturer

Sign

Compute prog on inp

outp, σ

Attestation that outp
is correctly computed
from prog and inp

Why Ideal Abstractions?

6

• Formal security proofs for implementations
from precise abstractions and security models

Why Ideal Abstractions?

6

• Formal security proofs for implementations
from precise abstractions and security models

• Ultimate Goal: Formally verified processor
implementing this formal abstraction

Why Ideal Abstractions?

6

Formal Model

7

𝓖att[Σ, reg]

Signature scheme Registry of all platforms with trusted hardware

Formal Model

7

𝓖att[Σ, reg]

init(): , ⟵ Σ.KeyGen(1λ)

getpk() from P: send to P

Signature scheme Registry of all platforms with trusted hardware

Formal Model

7

𝓖att[Σ, reg]

init(): , ⟵ Σ.KeyGen(1λ)

getpk() from P: send to P

install(prog, sid) from P ∊ reg:

Signature scheme Registry of all platforms with trusted hardware

Formal Model

7

𝓖att[Σ, reg]

init(): , ⟵ Σ.KeyGen(1λ)

getpk() from P: send to P

install(prog, sid) from P ∊ reg:

Signature scheme Registry of all platforms with trusted hardware

(eid, P) (sid, prog, M)

enclave id
(nonce)

enclave
memory

… …

Formal Model

7

𝓖att[Σ, reg]

init(): , ⟵ Σ.KeyGen(1λ)

getpk() from P: send to P

install(prog, sid) from P ∊ reg:

resume(eid, inp) from P ∊ reg:

Signature scheme Registry of all platforms with trusted hardware

(eid, P) (sid, prog, M)

enclave id
(nonce)

enclave
memory

… …

Formal Model

7

𝓖att[Σ, reg]

init(): , ⟵ Σ.KeyGen(1λ)

getpk() from P: send to P

install(prog, sid) from P ∊ reg:

resume(eid, inp) from P ∊ reg:
(out, M’) = prog(inp, M)

Signature scheme Registry of all platforms with trusted hardware

(eid, P) (sid, prog, M)

enclave id
(nonce)

enclave
memory

… …

Formal Model

7

𝓖att[Σ, reg]

init(): , ⟵ Σ.KeyGen(1λ)

getpk() from P: send to P

install(prog, sid) from P ∊ reg:

resume(eid, inp) from P ∊ reg:
(out, M’) = prog(inp, M)

Signature scheme Registry of all platforms with trusted hardware

(eid, P) (sid, prog, M)

enclave id
(nonce)

enclave
memory

… …

’

Formal Model

7

𝓖att[Σ, reg]

init(): , ⟵ Σ.KeyGen(1λ)

getpk() from P: send to P

install(prog, sid) from P ∊ reg:

resume(eid, inp) from P ∊ reg:
(out, M’) = prog(inp, M)

σ = Σ.Sign(, eid, sid, prog, out)

send (out, σ) to P

Signature scheme Registry of all platforms with trusted hardware

(eid, P) (sid, prog, M)

enclave id
(nonce)

enclave
memory

… …

’

Composability with Global State

8

Composability with Global State

8

Model 𝓖att as global ideal functionality [CDPW’07]

Composability with Global State

8

Model 𝓖att as global ideal functionality [CDPW’07]

𝓖att[Σ, reg]

Attestation key is shared across protocols

Composability with Global State

Model 𝓖att as global ideal functionality [CDPW’07]

σ

𝓖att[Σ, reg]

9

Composability with Global State

Model 𝓖att as global ideal functionality [CDPW’07]

σ

𝓖att[Σ, reg]

Example of concrete security issue:

Non-deniability for parties in reg

9

10

The more interesting question

The good

11

Powerful
Abstraction!

The good

11

Powerful
Abstraction!

𝓖att ➔ ‘’Stateful Obfuscation’’

Impossible even with stateless
tokens and cryptographic

obfuscation

The good The surprise

11

Powerful
Abstraction!

𝓖att ➔ ‘’Stateful Obfuscation’’

Impossible even with stateless
tokens and cryptographic

obfuscation

UC-Secure MPC?

The good The surprise

11

Powerful
Abstraction!

𝓖att ➔ ‘’Stateful Obfuscation’’

Impossible even with stateless
tokens and cryptographic

obfuscation

UC-Secure MPC?

The surprise

12

UC-Secure MPC?

Consider 2PC

13

14

UC-secure 2PC possible if both
parties have trusted hardware

Consider 2PC

14

UC-secure 2PC possible if both
parties have trusted hardware

Impossible if only one party has
trusted hardware!

Consider 2PC

15

Impossible if only one party has
trusted hardware!

Consider 2PC

This is counter-intuitive.

Issue: non-deniability

16

under global pk

Issue: non-deniability

16

under global pk

Convinced that
some honest party in the registry

participated in the protocol

17

under global pk

Convinced that
some honest party in the registry

participated in the protocol

Non-issue if all nodes have trusted hardware
or if pk isn’t global

What if we really really want to
use a single trusted processor?

18

What if we really really want to
use a single trusted processor?

18

Extra setup assumption: Augmented CRS

What if we really really want to
use a single trusted processor?

18

Extra setup assumption: Augmented CRS

UC-Secure MPC with O(1) crypto operations

What if we really really want to
use a single trusted processor?

18

Extra setup assumption: Augmented CRS

Backdoor enclave program: allow simulator
to extract inputs and program the outputs

for corrupt parties

UC-Secure MPC with O(1) crypto operations

Server

What if we really really want to
use a single trusted processor?

19

prog[f,𝓖acrs,𝒫1 … 𝒫n]

𝒫i

Server

What if we really really want to
use a single trusted processor?

19

prog[f,𝓖acrs,𝒫1 … 𝒫n]

1. Generate pki,ski

𝒫i

Server

What if we really really want to
use a single trusted processor?

19

prog[f,𝓖acrs,𝒫1 … 𝒫n]

1. Generate pki,ski

𝒫i

pki, σ

Full protocol replaces σ
by a WI-Proof

Server

What if we really really want to
use a single trusted processor?

19

prog[f,𝓖acrs,𝒫1 … 𝒫n]

1. Generate pki,ski

Key-exchange
𝒫i

pki, σ

Full protocol replaces σ
by a WI-Proof

Server

What if we really really want to
use a single trusted processor?

19

prog[f,𝓖acrs,𝒫1 … 𝒫n]

1. Generate pki,ski

1. Collect all inpi

Key-exchange
𝒫i

pki, σ

Encrypted inpi

Full protocol replaces σ
by a WI-Proof

Server

What if we really really want to
use a single trusted processor?

19

prog[f,𝓖acrs,𝒫1 … 𝒫n]

1. Generate pki,ski

1. Collect all inpi

2. Compute outp*

Key-exchange
𝒫i

pki, σ

Encrypted inpi

Encrypted outpi

Full protocol replaces σ
by a WI-Proof

Server

What if we really really want to
use a single trusted processor?

20

prog[f,𝓖acrs,𝒫1 … 𝒫n]

3. Trapdoors

Sim

Server

What if we really really want to
use a single trusted processor?

20

prog[f,𝓖acrs,𝒫1 … 𝒫n]

3. Trapdoors

check(𝒢acrs, 𝒫i, idi)

Sim

extract(idi)

Server

What if we really really want to
use a single trusted processor?

20

prog[f,𝓖acrs,𝒫1 … 𝒫n]

3. Trapdoors

check(𝒢acrs, 𝒫i, idi)

Sim

extract(idi)

ski

Sim can recover inpi

Server

What if we really really want to
use a single trusted processor?

20

prog[f,𝓖acrs,𝒫1 … 𝒫n]

3. Trapdoors

check(𝒢acrs, 𝒫i, idi)

set outpi = v

Sim

equivocate(idi, v)

21

Fair 2PC?

21

Fair 2PC?

• Fairness impossible for general
functionalities in plain model [Cleve86]

21

Fair 2PC?

• Fairness impossible for general
functionalities in plain model [Cleve86]

Can trusted hardware help with fairness?

22

UC-Secure Fair 2PC

Enhanced model: Clock-aware secure processor

22

UC-Secure Fair 2PC

Enhanced model: Clock-aware secure processor

• Fair 2PC possible if both parties have clock-
aware secure processors

22

UC-Secure Fair 2PC

Enhanced model: Clock-aware secure processor

• Fair 2PC possible if both parties have clock-
aware secure processors

• Fair coin-tossing possible if one party has clock-
aware secure processors (+ ACRS)

22

UC-Secure Fair 2PC

Enhanced model: Clock-aware secure processor

• Fair 2PC possible if both parties have clock-
aware secure processors

•

23

Enclaves establish secure channel

23

Enclaves establish secure channel

Enclaves exchange inputs and compute outputs

23

Enclaves establish secure channel

Enclaves exchange inputs and compute outputs

“Will release to Alice in 2λ time” “Will release to Bob in 2λ time”

23

Enclaves establish secure channel

Enclaves exchange inputs and compute outputs

“Will release to Alice in 2λ time” “Will release to Bob in 2λ time”

“Will release to Alice in 2λ-1 time” “Will release to Bob in 2λ-1 time”

…

24

Enclaves establish secure channel

“Will release to Alice in 2λ-1 time” “Will release to Bob in 2λ-1 time”

…

If Alice learns result at time t < 2λ,
Bob will learn it at the latest by time 2t

+ no ‘’wasted’’ computation!

What next?

Formal
abstractions

of trusted hw

What next?

Attested execution is a powerful assumption

⟹ Stateful Obfuscation, Efficient MPC, Fair 2PC

Formal
abstractions

of trusted hw

What next?

Attested execution is a powerful assumption

⟹ Stateful Obfuscation, Efficient MPC, Fair 2PC

Subtle issues unless all parties have trusted hardware

⟹ Non-deniability, Extra setup assumptions

Formal
abstractions

of trusted hw

What next?

Attested execution is a powerful assumption

⟹ Stateful Obfuscation, Efficient MPC, Fair 2PC

Subtle issues unless all parties have trusted hardware

⟹ Non-deniability, Extra setup assumptions

Formal
abstractions

of trusted hw

Formally verified
secure processor

design

What next?

Attested execution is a powerful assumption

⟹ Stateful Obfuscation, Efficient MPC, Fair 2PC

Subtle issues unless all parties have trusted hardware

⟹ Non-deniability, Extra setup assumptions

Formal
abstractions

of trusted hw

Formally verified
secure processor

design

Secure implementations
from formally secure

abstractions

Thank You

Formal
abstractions

of trusted hw

Formally verified
secure processor

design

Secure implementations
from formally secure

abstractions

