
Fixing Cracks in the Concrete:
Random Oracles with Auxiliary

Input, Revisited

Yevgeniy Dodis
New York University

Joint work with Siyao Guo (Simons Institute, UC Berkeley)

Jonathan Katz (University of Maryland)

Hash Functions Are Ubiquitous

• OWFs

• PRG/PRFs

• MACs

• CRHFs

• KDFs
• …

How to assess the
best possible concrete security

for each application?

Random Oracle Model Methodology
[BR93]

A: T queriesRandom Function
O:[N]->[M]

Clean proofs, Precise bounds: e.g., OWFs/MACs
T/min(N,M), PRFs/PRGs T/N, CRHFs T2/M, etc.

Practical heuristics: for “natural” applications,

Security in ROM = Security in “standard model”

(for the best instantiation of O)

Simple Proof Techniques: programmability, lazy
sampling, distinguishing-to-extraction, etc.

• Theoretical counter-examples [CGH04, etc.]
“artificial” and don’t affect widely used applications

Random Oracle Model Methodology
[BR93]

A: T queriesRandom Function
O:[N]->[M]

Clean proofs, Precise bounds: e.g., OWFs/MACs
T/min(N,M), PRFs/PRGs T/N, CRHFs T2/M, etc.

Practical heuristics: for “natural” applications,

Security in ROM = Security in “standard model”

(for the best instantiation of O)

Simple Proof Techniques: programmability, lazy
sampling, distinguishing-to-extraction, etc.

• Theoretical counter-examples [CGH04, etc.]
“artificial” and don’t affect widely used applications

Random Oracle Model Methodology
[BR93]

A: T queriesRandom Function
O:[N]->[M]

Clean proofs, Precise bounds: e.g., OWFs/MACs
T/min(N,M), PRFs/PRGs T/N, CRHFs T2/M, etc.

Practical heuristics: for “natural” applications,

Security in ROM = Security in “standard model”

(for the best instantiation of O)

Simple Proof Techniques: programmability, lazy
sampling, distinguishing-to-extraction, etc.

• Theoretical counter-examples [CGH04, etc.]
“artificial” and don’t affect widely used applications

Non-uniform Cracks in the Concrete

PRG: T/N

CRHF: T2/M

Random Oracle Standard Model

1

1/N1/2

(constant time [AGHP92])

OWF: T/N
[N]->[N]

1
(rainbow tables;

in time N2/3 [Hel80])

Security

Non-uniform Cracks in the Concrete

PRG: T/N

CRHF: T2/M

Random Oracle Standard Model

1

1/N1/2

(constant time [AGHP92])

OWF: T/N
[N]->[N]

1
(rainbow tables;

in time N2/3 [Hel80])

Security

Non-Uniform Adversaries

• Modeled as families of circuits
– Can “hardwire” arbitrary (bounded) “advice” before

attacking the system
– Preprocessing: special case of “computable” advice

(corresponds to potentially implementable attack)

• Why/how did this become “standard” model?
– Uniform model too weak (e.g., attacker can focus on

a given security parameter in advance)
– Sometimes preprocessing realistic (rainbow tables!)
– Seems critical for protocol composition (i.e., ZK)
– Wlog, deterministic attacker (P/poly=BPP/poly)
– (Non-uniform) hardness vs randomness :

non-uniform lower bounds => derandomization

Can we “salvage” ROM methodology and be
consistent with non-uniform attackers?

[Unr07] YES: ROM with Auxiliary-Input (ROM-AI)

Non-uniform Cracks in the Concrete

The ROM methodology is blatantly false for most
natural and widely deployed applications when:

• Preprocessing is allowed

• The standard model adversary is non-uniform

Practical heuristics: for “natural” applications,

Security in ROM = Security in “standard model”

(for the best instantiation of O)

• Theoretical counter-examples [CGH04, etc.]
“artificial” and don’t affect widely used applications

Strictly worse!

Security

Fixing Cracks in the Concrete

A1 : T queries

Random function
O:[N]->[M]

A0: S bits

A= (A0, A1)ROM-AI

• A0: computationally unbounded, gets entire RO,
and passes S bits of O-dependent advice to A1

– Becomes non-uniform advice when O instantiated
– Separating S and T for more accurate time-space

tradeoffs (e.g., for RAM attackers vs. circuits)

• ROM vs. standard model “separations” disappear!
Concrete bounds in ROM-AI are meaningful
against standard model non-uniform attackers!

offline

online

Fixing Cracks in the Concrete

A1 : T queries

Random function
O:[N]->[M]

A0: S bits

A= (A0, A1)ROM-AI

ROM-AI methodology: for “natural” applications,

Security in ROM-AI = Security in “standard model”

against non-uniform attackers

(for the best instantiation of O)

Security against any preprocessing attacks

Handling Auxiliary Input?

Traditional ROM ROM-AI

Lazy Sampling

Programmability

Distinguishing-
to-Extraction

Problem: conditioned on S-bit “leakage”, values of
random oracle are not random and independent

Handling Auxiliary Input:
Pre-sampling [Unruh07]

• Intuition: conditioned on S-bit leakage, only

“few” values of O(x) are “heavily biased”

– A0 can pass these “few” values as advice to A1

• The rest can be re-sampled fresh and

independent of the leakage!

– Lazy sampling, programmability, etc. all come back

as long as avoid the “few” pre-sampled points

Handling Auxiliary Input:
Pre-sampling [Unruh07]

Random Function
O:[N]->[M]

Random Function
R:[N]->[M] | PreO≈ε

PreO = {(x1,y1)…,(xP,yP)}

S bits about O, then T queries

x
y=O(x) x

y=
R(x), o.w.
yi, if x=xi

Handling Auxiliary Input:
Pre-sampling [Unruh07]

Random Function
O:[N]->[M]

Random Function
R:[N]->[M] | PreO≈ε

PreO = {(x1,y1)…,(xP,yP)}

S bits about O, then T queries

• PreO can depend on S-bit “leakage” z about O
– P is a free parameter optimized later (see below)

• But R is random and independent on z

• How big is ε?

[Unr07]: ε < (ST/P)1/2

Security of OWFs in ROM-AI

Random Function
O:[N]->[N]

Random Function
R:[N]->[N] | PreO

S bits, T queries |PreO |=P

≈ε

Advantage < (ST/P)1/2 + P/N + T/(N-P)

P = (STN2)1/3 Advantage < (ST/N) 1/3 + T/N

Does not match best generic attacks :

Advantage > ST/N + T/N (if ST2<N)

Our Motivating Question

Exact security for basic primitives?
(critical for ROM-AI methodology!)

Our Results

• Unruh’s “pre-sampling conjecture” false
– For many apps (OWFs, MACs, etc.), pre-sampling

(as defined above) cannot give tight bounds

• New technique: Compression
– Apply to get nearly tight ROM-AI bounds for

OWFs, MACs, PRGs, PRFs, (salted) CRHFs

– Bounds much weaker than traditional ROM
(because there are non-uniform attacks!)

• Salting provably defeats preprocessing!
– Long-enough salt ROM-AI-sec. ROM-sec.

– Possible way to reconcile theory and practice!

Our Results

• Unruh’s “pre-sampling conjecture” false
– For many apps (OWFs, MACs, etc.), pre-sampling

(as defined above) cannot give tight bounds

• New technique: Compression
– Apply to get nearly tight ROM-AI bounds for

OWFs, MACs, PRGs, PRFs, (salted) CRHFs

– Bounds much weaker than traditional ROM
(because there are non-uniform attacks!)

• Salting provably defeats preprocessing!
– Long-enough salt ROM-AI-sec. ROM-sec.

– Possible way to reconcile theory and practice!

Improve Pre-sampling ?

Random Function
O:[N]->[N]

Random Function
R:[N]->[N] | PreO

S bits, T queries |PreO |=P

≈ε

• [Unr07]: ε < (ST/P)1/2

– Can’t get negl(n) security with P = poly(n)

– Conj: can get ε = negl(n) for P = poly(n)

• Our result: ε > (ST/P)
– Unruh’s conjecture false (in this generality)

• Is it enough to prove tight security?

tight! [CDGS17]

Security of OWFs in ROM-AI

Random Function
O:[N]->[N]

Random Function
R:[N]->[N] | PreO

S bits, T queries |PreO |=P

≈ε

1/2

P = (STN2)1/3 Advantage < (ST/N) 1/3 + T/N

Does not match best generic attacks :

Advantage > ST/N + T/N (if ST2<N)

via“dream pre-sampling"

1/2

Advantage < (ST/P)1/2 + P/N + T/(N-P)

Our New Technique

High advantage Compressing RO

RO is impossible to compress

 Exact security bounds

Challenge: need to compress by more than S bits!

Compression Paradigm [GT00,DTT10]!

(salted) CRHFs
Pr[A1

O (A0(O), a) = (x, x’) s.t. x ≠ x’, O(a,x) = O(a,x’)]

= O(S/K + T2/M)

Idea: compress O(a,x’) using indices i,j [T] and O(a,x)

of saved bits: |# of a s.t. A succeeds| x (logM – 2logT)
= εK x log (M/T2)

of spent bits: S + description of set {a | A succeeds} =
= S + log(K choose εK)

 S > εK log (εM/eT2)

 ε = O(S/K + T2/M)

Number of salts a

Optimal: can hardwire S collisions inside advice A0(O)!

The Order Issue

Consider 2 salts: O(a1,x1) = O(a1,x1’) ; O(a2,x2) = O(a2,x2’)

Ideally, compress both O(a1,x1’) and O(a2,x2’)

Problem: what if A(z, a1) would query O(a2,x2’) ??
(not so crazy because of advice z…)

Solution: run A on all salts a where he succeeds,
and keep track of “salt-specific” indices ia, ja for
the first collision (which exists!) on all such a’s

ROM-AI Bounds for Basic Primitives

* Length preserving for simplicity

ST/N

(ST/N)1/2

(ST/N)1/2

ST/N

Always Better than Pre-sampling

* Length preserving for simplicity

(ST/N)1/3

(ST/N)1/3

(ST/N)1/3

(ST/N)1/3

ST/N

(ST/N)1/2

(ST/N)1/2

ST/N

Nearly Tight

* Length preserving for simplicity

Min(ST/N, (S2T/N2)1/3)

(ST/N)1/2

(ST/N)1/2

Min(ST/N, (S2T/N2)1/3)

ST/N

(ST/N)1/2

(ST/N)1/2

ST/N

But Much Weaker than ROM

* Length preserving for simplicity

T/N

T/N

T/N

T/N

ST/N

(ST/N)1/2

(ST/N)1/2

ST/N

But Much Weaker than ROM

Maybe we can all live in peace?

Non-uniform attackers
too strong!!!

How to Defeat Preprocessing?

Chose random public salt after preprocessing;
Prepend as input to O

Extensively used in theory and practice:
Saw the magic for CRHFs already!

Security Bounds for Salting
O: [K] x [N] → [M]

* Length preserving for simplicity

T/N

T/N

T/N

T/N

T2/M

T/N + ST/KN

T/N + (ST/KN)1/2

T/N + (ST/KN)1/2

T/N + ST/KN

T2/M + S/K

T/N + ST/KN

T/N + (ST/KN)1/2

T/N + (ST/KN)1/2

T/N + ST/KN

T2/M + S/K

Security Bounds for Salting
O: [K] x [N] → [M]

* Length preserving for simplicity

T/N

T/N

T/N

T/N

T2/M

Salting Provably helps!

At most n bits of salt yield same security
in ROM with auxiliary input
as without auxiliary input

n-bit salt provably defeats preprocessing

Summary

T S,T

Summary

• ROM-AI is the new “cool kid” in town !

– very clean: just S and T !

– addresses both theory (non-uniformity) and

practice (preprocessing)

– non-trivial, yet elegant proofs

– 1000’s of ROM papers need re-evaluation !

• Obfuscation without the mess !

Thanks!

Your proposal is written with clarity and conviction.
Send it up to legal for obfuscation.

Follow-Up Work [CDGS17]

• Optimal Pre-Sampling Error ST/P

– Improves (ST/P)1/2 [Unruh07]

– Gives tight bounds for indistinguishability apps

• New pre-sampling for unpredictability apps

– Matches compression for all current apps

• Salting generically defeats preprocessing

• Random Permutation and Ideal Cipher

with Auxiliary Input

Limitation of Pre-sampling

Random Function
O:[N]-> {0,1}

Random Function
R:[N]-> {0,1} | PreO

|Pre|=P

≈ε

Pr[A1
O (A0(O))=1] - Pr[A1

R|Pre(A0(O))=1] > 1/24P

A=(A0,A1)$ "

A0(O)=Marj(O1,…,OL) A1=1 if A0(O)= Oi where i~[L]

> 1/2 + 1/3L1/2 <=1/2 + P/2L L= 4P2+1

Extending to large S,T

Extending to large T: xor first

A A…

… …

Fan-in L=4(P/T)2+1

Fan-in T Fan-in T

MAJ

OLTOLT-T+1O1 OT
…

Extending to large S: repeat on disjoint inputs

