Fixing Cracks in the Concrete: Random Oracles with Auxiliary Input, Revisited

Yevgeniy Dodis
New York University

Joint work with Siyao Guo (Simons Institute, UC Berkeley)
Jonathan Katz (University of Maryland)
Hash Functions Are Ubiquitous

- OWFs
- PRG/PRFs
- MACs
- CRHFs
- KDFs
- ...

How to assess the best possible concrete security for each application?
Random Oracle Model Methodology

[BR93]

Random Function

\[O : [N] \rightarrow [M] \]

A: \(T \) queries

Clean proofs, Precise bounds: e.g., OWFs/MACs

\(T/min(N,M) \), PRFs/PRGs \(T/N \), CRHFs \(T^2/M \), etc.

Simple Proof Techniques: programmability, lazy

sampling, distinguishing-to-extraction, etc.

Practical heuristics: for “natural” applications,

Security in ROM = Security in “standard model”

(for the best instantiation of \(O \))

- Theoretical counter-examples [CGH04, etc.]

“artificial” and don’t affect widely used applications
Random Oracle Model Methodology [BR93]

Practical heuristics: for “natural” applications,
Security in ROM = Security in “standard model”
(for the best instantiation of O)

• Theoretical counter-examples [CGH04, etc.]
 “artificial” and don’t affect widely used applications
Random Oracle Model Methodology [BR93]

Practical heuristics: for “natural” applications,
Security in ROM = Security in “standard model”
(for the best instantiation of O)

- Theoretical counter-examples [CGH04, etc.]
 “artificial” and don’t affect widely used applications
Cracks in the Concrete

Random Oracle

Standard Model

CRHF: \(T^2 / M \)
1

OWF:
\(\frac{T}{N} \)
1

\([N] \rightarrow [N] \)
(rainbow tables; in time \(N^{2/3} \) [Hel80])

PRG:
\(\frac{T}{N} \)
\(\frac{1}{N^{1/2}} \)
(constant time [AGHP92])
Non-uniform cracks in the Concrete

Random Oracle Standard Model

CRHF: T^2/N 1

OWF: T/N 1
[N] => [N]
(rainbow tables; in time N^{2/3} [Hel80])

PRG: T/N 1/N^{1/2}
(constant time [AGHP92])
Non-Uniform Adversaries

• Modeled as families of circuits
 – Can “hardwire” arbitrary (bounded) “advice” before attacking the system
 – **Preprocessing**: special case of “computable” advice (corresponds to potentially implementable attack)

• Why/how did this become “standard” model?
 – Uniform model *too weak* (e.g., attacker can focus on a given security parameter in advance)
 – Sometimes **preprocessing realistic** (rainbow tables!)
 – Seems critical for protocol composition (i.e., ZK)
 – Wlog, **deterministic** attacker (P/poly=BPP/poly)
 – (Non-uniform) **hardness vs randomness**: non-uniform lower bounds => derandomization
Non-uniform Cracks in the Concrete

Can we “salvage” ROM methodology and be consistent with non-uniform attackers?
[Unr07] YES: ROM with Auxiliary-Input (ROM-AI)

The ROM methodology is blatantly false for most natural and widely deployed applications when:
• Preprocessing is allowed
• The standard model adversary is non-uniform

• Theoretical counter-examples [CGH04, etc.] “artificial” and don’t affect widely used applications
Fixing **Cracks** in the Concrete

ROM-AI

<table>
<thead>
<tr>
<th>Random function</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O: [N] \rightarrow [M]$</td>
</tr>
</tbody>
</table>

$A = (A_0, A_1)$

- **A_0**: *computationally unbounded*, gets entire RO, and passes S bits of O-dependent advice to A_1
 - Becomes *non-uniform* advice when O instantiated
 - Separating S and T for more accurate *time-space tradeoffs* (e.g., for RAM attackers vs. circuits)

- **A_1**: T queries

ROM vs. standard model “separations” disappear!

Concrete bounds in **ROM-AI** are meaningful against standard model **non-uniform** attackers!
Fixing **Cracks in the Concrete**

ROM-AI

Random function

\[O: [N] \rightarrow [M] \]

\(A = (A_0, A_1) \)

\(A_0: S \text{ bits} \)

\(A_1: T \text{ queries} \)

ROM-AI methodology: for "natural" applications,

Security in **ROM-AI** = Security in "standard model"

against **non-uniform** attackers

(for the best instantiation of \(O \))

Security against any **preprocessing** attacks
Handling Auxiliary Input?

Problem: conditioned on S-bit “leakage”, values of random oracle are not random and independent

<table>
<thead>
<tr>
<th></th>
<th>Traditional ROM</th>
<th>ROM-AI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lazy Sampling</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>Programmability</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>Distinguishing-to-Extraction</td>
<td>✓</td>
<td>✗</td>
</tr>
</tbody>
</table>
Handling Auxiliary Input: Pre-sampling [Unruh07]

- **Intuition**: conditioned on S-bit leakage, only “few” values of $O(x)$ are “heavily biased”
 - A_0 can pass these “few” values as advice to A_1

- The rest can be re-sampled **fresh and independent of the leakage**!
 - Lazy sampling, programmability, etc. all come back as long as avoid the “few” pre-sampled points
Handling Auxiliary Input: Pre-sampling [Unruh07]

Random Function
\(O : [N] \rightarrow [M] \) \(\approx \epsilon \)

Random Function
\(R : [N] \rightarrow [M] \mid Pre^O \)

\(Pre^O = \{(x_1,y_1),..., (x_p,y_p)\} \)

\(S \) bits about \(O \), then \(T \) queries

\(y = O(x) \)

\(y = \begin{cases}
 y_i, & \text{if } x = x_i \\
 R(x), & \text{o.w.}
\end{cases} \)
Handling Auxiliary Input: Pre-sampling [Unruh07]

\[\text{Random Function } O : [N] \rightarrow [M] \]

\[\approx \varepsilon \]

\[\text{Random Function } R : [N] \rightarrow [M] \mid Pre^O \]

- \(Pre^O \) can depend on \(S \)-bit “leakage” \(z \) about \(O \)
 - \(P \) is a free parameter optimized later (see below)
- But \(R \) is random and independent on \(z \)
- How big is \(\varepsilon \)?

\[[\text{Unr}07] : \varepsilon < (ST/P)^{1/2} \]

\(S \) bits about \(O \), then \(T \) queries
Security of OWFs in ROM-AI

S bits, T queries

Random Function $O:[N] \rightarrow [N]$

$\approx \epsilon$

Random Function $R:[N] \rightarrow [N]$ | Pre^O

Advantage < $(ST/P)^{1/2} + P/N + T/(N-P)$

$P = (STN^2)^{1/3} \Rightarrow$ Advantage < $(ST/N)^{1/3} + T/N$

Does not match best generic attacks 😞 :

Advantage > $ST/N + T/N$ (if $ST^2 < N$)
Our Motivating Question

Exact security for **basic primitives**?
(critical for **ROM-AI methodology**)
Our Results

• Unruh’s "pre-sampling conjecture" false
 – For many apps (OWFs, MACs, etc.), pre-sampling (as defined above) cannot give tight bounds

• New technique: Compression
 – Apply to get nearly tight ROM-AI bounds for OWFs, MACs, PRGs, PRFs, (salted) CRHFs 😊
 – Bounds much weaker than traditional ROM 😞 (because there are non-uniform attacks!)

• Salting provably defeats preprocessing!
 – Long-enough salt ⇒ ROM-AI-sec. ≈ ROM-sec.
 – Possible way to reconcile theory and practice!
Our Results

- Salting provably defeats preprocessing!
 - Long-enough salt \Rightarrow ROM-AI-sec. \approx ROM-sec.
 - Possible way to reconcile theory and practice!
Improve Pre-sampling?

S bits, T queries

Random Function $O:[N] \rightarrow [N] \approx \varepsilon$

Random Function $R:[N] \rightarrow [N] \mid \text{Pre}^O$

- [Unr07]: $\varepsilon < (ST/P)^{1/2}$
 - Can’t get $\text{negl}(n)$ security with $P = \text{poly}(n)$ 😞
 - Conj: can get $\varepsilon = \text{negl}(n)$ for $P = \text{poly}(n)$ 😊

- Our result: $\varepsilon > \Omega(ST/P)$
 - Unruh’s conjecture false (in this generality)

- Is it enough to prove tight security?

$tight! [\text{CDGS17}]$
Security of OWF}s in ROM-AI

Random Function $O:[N] \rightarrow [N]$ with S bits, T queries

Random Function $R:[N] \rightarrow [N] \mid \text{Pre}^0$

$|\text{Pre}^0| = P$

$P = (STN^2)^{1/3}$

Advantage $< (ST/P)^{1/2}$ + $P/N + T/(N-P)$

Advantage $< (ST/N)^{1/3}$ + T/N

Does not match best generic attacks

Advantage $> ST/N + T/N$ (if $ST^2 < N$)

via "dream pre-sampling"
Our New Technique

Compression Paradigm \([GT00, DTT10]\)!

High advantage \(\Rightarrow\) Compressing RO

RO is impossible to compress

\(\Rightarrow\) **Exact** security bounds

Challenge: need to compress by more than \(S\) bits!
(salted) CRHFs

\[\Pr[A_1^O(A_0(O), a) = (x, x') \text{ s.t. } x \neq x', O(a,x) = O(a,x')] = O(S/K + T^2/M) \]

Optimal: can hardwire \(S \) collisions inside advice \(A_0(O) \)!

Idea: compress \(O(a,x') \) using indices \(i,j \in [T] \) and \(O(a,x) \)

of saved bits: \(|\# \text{ of } a \text{ s.t. } A \text{ succeeds}| \times (\log M - 2\log T) \)

\[= \varepsilon K \times \log(M/T^2) \]

of spent bits: \(S + \text{ description of set } \{a \mid A \text{ succeeds} \} = S + \log(K \text{ choose } \varepsilon K) \)

\[\Rightarrow S > \varepsilon K \log(\varepsilon M/eT^2) \]

\[\Rightarrow \varepsilon = O(S/K + T^2/M) \]
The Order Issue

Consider 2 salts: $O(a_1, x_1) = O(a_1, x_1')$; $O(a_2, x_2) = O(a_2, x_2')$

Ideally, compress both $O(a_1, x_1')$ and $O(a_2, x_2')$

Problem: what if $A(z, a_1)$ would query $O(a_2, x_2')$??

(not so crazy because of advice z...)

Solution: run A on all salts a where he succeeds, and keep track of “salt-specific” indices i_a, j_a for the first collision (which exists!) on all such a’s.
ROM-AI Bounds for Basic Primitives

<table>
<thead>
<tr>
<th>Primitive</th>
<th>Our ROM-AI Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>OWF*</td>
<td>ST/N</td>
</tr>
<tr>
<td>PRG</td>
<td>$(ST/N)^{1/2}$</td>
</tr>
<tr>
<td>PRF</td>
<td>$(ST/N)^{1/2}$</td>
</tr>
<tr>
<td>MAC*</td>
<td>ST/N</td>
</tr>
</tbody>
</table>

* Length preserving for simplicity
Always Better than Pre-sampling 😊

<table>
<thead>
<tr>
<th>Primitive</th>
<th>Our ROM-AI Bound</th>
<th>Pre-Sampling</th>
</tr>
</thead>
<tbody>
<tr>
<td>OWF*</td>
<td>ST/N</td>
<td>(ST/N)^{1/3}</td>
</tr>
<tr>
<td>PRG</td>
<td>(ST/N)^{1/2}</td>
<td>(ST/N)^{1/3}</td>
</tr>
<tr>
<td>PRF</td>
<td>(ST/N)^{1/2}</td>
<td>(ST/N)^{1/3}</td>
</tr>
<tr>
<td>MAC*</td>
<td>ST/N</td>
<td>(ST/N)^{1/3}</td>
</tr>
</tbody>
</table>

* Length preserving for simplicity
Nearly Tight 😊

<table>
<thead>
<tr>
<th>Primitive</th>
<th>Our ROM-AI Bound</th>
<th>Best Attack</th>
</tr>
</thead>
<tbody>
<tr>
<td>OWF</td>
<td>ST/N</td>
<td>Min(SST/N, (S^2T/N^2)^{1/3})</td>
</tr>
<tr>
<td>PRG</td>
<td>(ST/N)^{1/2}</td>
<td>(ST/N)^{1/2}</td>
</tr>
<tr>
<td>PRF</td>
<td>(ST/N)^{1/2}</td>
<td>(ST/N)^{1/2}</td>
</tr>
<tr>
<td>MAC</td>
<td>ST/N</td>
<td>Min(SST/N, (S^2T/N^2)^{1/3})</td>
</tr>
</tbody>
</table>

* Length preserving for simplicity
But Much Weaker than ROM 😞

<table>
<thead>
<tr>
<th>Primitive</th>
<th>Our ROM-AI Bound</th>
<th>Traditional ROM</th>
</tr>
</thead>
<tbody>
<tr>
<td>OWF*</td>
<td>ST/N</td>
<td>T/N</td>
</tr>
<tr>
<td>PRG</td>
<td>$(ST/N)^{1/2}$</td>
<td>T/N</td>
</tr>
<tr>
<td>PRF</td>
<td>$(ST/N)^{1/2}$</td>
<td>T/N</td>
</tr>
<tr>
<td>MAC*</td>
<td>ST/N</td>
<td>T/N</td>
</tr>
</tbody>
</table>

* Length preserving for simplicity
But Much Weaker than ROM 😞

Non-uniform attackers too strong!!!

Maybe we can all live in peace?
How to Defeat Preprocessing?

Extensively used in theory and practice:
Saw the magic for CRHF already!

Chose random public salt after preprocessing;
Prepend as input to O
Security Bounds for Salting

\(O: [K] \times [N] \rightarrow [M] \)

<table>
<thead>
<tr>
<th>Primitive</th>
<th>Salted ROM-AI Bound</th>
<th>Traditional ROM</th>
</tr>
</thead>
<tbody>
<tr>
<td>OWF*</td>
<td>(T/N + ST/KN)</td>
<td>(T/N)</td>
</tr>
<tr>
<td>PRG</td>
<td>(T/N + (ST/KN)^{1/2})</td>
<td>(T/N)</td>
</tr>
<tr>
<td>PRF</td>
<td>(T/N + (ST/KN)^{1/2})</td>
<td>(T/N)</td>
</tr>
<tr>
<td>MAC*</td>
<td>(T/N + ST/KN)</td>
<td>(T/N)</td>
</tr>
<tr>
<td>CRHF</td>
<td>(T^2/M + S/K)</td>
<td>(T^2/M)</td>
</tr>
</tbody>
</table>

* Length preserving for simplicity
Security Bounds for Salting

\[O: [K] \times [N] \rightarrow [M] \]

<table>
<thead>
<tr>
<th>Primitive</th>
<th>Salted ROM-AI Bound</th>
<th>Traditional ROM</th>
</tr>
</thead>
<tbody>
<tr>
<td>OWF*</td>
<td>(T/N + (STKN)^{1/2})</td>
<td>(T/N)</td>
</tr>
<tr>
<td>PRG</td>
<td>(T/N + (STKN)^{1/2})</td>
<td>(T/N)</td>
</tr>
<tr>
<td>PRF</td>
<td>(T/N + (STKN)^{1/2})</td>
<td>(T/N)</td>
</tr>
<tr>
<td>MAC*</td>
<td>(T/N + STKN)</td>
<td>(T/N)</td>
</tr>
<tr>
<td>CRHF</td>
<td>(T^2/M + SK)</td>
<td>(T^2/M)</td>
</tr>
</tbody>
</table>

* Length preserving for simplicity
Salting Provably helps!

At most n bits of salt yield \approx same security in ROM with auxiliary input as without auxiliary input.

n-bit salt provably defeats preprocessing
Summary

T → S,T

Concrete Crack Repair

Before

After
Summary

• **ROM-AI is the new “cool kid” in town!**
 – very clean: just S and T!
 – addresses both *theory* (non-uniformity) and *practice* (preprocessing)
 – non-trivial, yet *elegant* proofs
 – 1000’s of ROM papers need re-evaluation!

• **Obfuscation without the mess!**
Thanks!

Your proposal is written with clarity and conviction. Send it up to legal for obfuscation.
Follow-Up Work [CDGS17]

- **Optimal Pre-Sampling Error** ST/P
 - Improves $(ST/P)^{1/2}$ [Unruh07]
 - Gives tight bounds for indistinguishability apps
- **New pre-sampling** for unpredictability apps
 - Matches compression for all current apps
- **Salting generically defeats preprocessing**
- **Random Permutation and Ideal Cipher** with Auxiliary Input
Limitation of Pre-sampling

\begin{align*}
\text{Random Function} & \quad \approx \varepsilon \\
O: [N] \rightarrow \{0, 1\} & \quad \text{Random Function} \\
A = (A_0, A_1) & \quad R: [N] \rightarrow \{0, 1\} \mid \text{Pre}^0 \\
\Pr[A_1^O(A_0(O)) = 1] & \quad |\text{Pre}| = P \\
\Pr[A_1^R|\text{Pre}(A_0(O)) = 1] & > \frac{1}{24}P \\
> \frac{1}{2} + \frac{1}{3}L^{1/2} & \leq \frac{1}{2} + \frac{P}{2L} \\
A_0(O) = \text{Marj}(O_1, \ldots, O_L) & \quad A_1 = 1 \text{ if } A_0(O) = O_i \text{ where } i \sim [L]
\end{align*}
Extending to large S, T

Extending to large T: xor first

Extending to large S: repeat on disjoint inputs