Fixing Cracks in the Concrete:
Random Oracles with Auxiliary
Input, Revisited

Yevgeniy Dodis
New York University

Joint work with Siyao Guo (Simons Institute, UC Berkeley)
Jonathan Katz (University of Maryland)

Hash Functions Are Ubiquitous

- OWFs
- PRG/PRFs
- MACs

» CRHFs

- KDFs

How to assess the
best possible concrete security
for each application?

Random Oracle Model Methodology
[BR93]

Random Function| A: T gueries
O:[N]->[M]

Clean proofs, Precise bounds: e.g., OWFs/MACs
T/min(N,M), PRFs/PRGs T/N, CRHFs T42/M, etc.

Simple Proof Techniques: programmability, lazy
sampling, distinguishing-to-extraction, etc.

Practical heuristics: for "natural” applications,
Security in ROM = Security in "standard model”
(for the best instantiation of O)

- Theoretical counter-examples [CGHO4, etc.]
“artificial” and don't affect widely used applications

Random Oracle Model Methodology
[BRI3]

Practical heuristics: for "natural” applications,
Security in ROM = Security in "standard model”
(for the best instantiation of O)

- Theoretical counter-examples [CGHO4, etc.]
“artificial” and don't affect widely used applications

Random Oracle Model Methodology
[BRI3]

Practical heuristics: for "natural” applications,
Security in ROM = Security in "standard model”
(for the best instantiation of O)

- Theoretical counter-examples [CGHO4, etc.]
“artificial” and don't affect widely used applications

\Securi'ry}
Cracks in the Concretel

Random Oracle Standard Model

CRHF: T2/M 1
OWF: /N S
[IN]->[N] (rainbow tables:; ’
in time N?/3 [Hel80])
PRG: T/N 1/N1/2

(constant time [AGHP92])

\Securi'ry}
Non-uniform Cracks in the Concrete!

Random Oracle Standard Model

CRHF: T2/M 1
OWF: T/N 1
[N]->[N] (rainbow tables;

in time N2/3 [Hel80])

PRG: T/N 1/NVz

(constant time [AGHP92])

Non-Uniform Adversaries

* Modeled as families of circuits

— Can "hardwire" arbitrary (bounded) "advice” before
attacking the system

— Preprocessing: special case of "computable” advice
(corresponds to potentially implementable attack)

« Why/how did this become "standard” model?

— Uniform model too weak (e.g., attacker can focus on
a given security parameter in advance)

— Sometimes preprocessing realistic (rainbow tables!)
— Seems critical for protocol composition (i.e., ZK)
— Wlog, deterministic attacker (P/poly=BPP/poly)

— (Non-uniform) hardness vs randomness :
non-uniform lower bounds => derandomization

\Securi’ry}
Non-uniform Cracks in the Concrete!l

Can we “"salvage” ROM methodology and be
consistent with non-uniform attackers?

[UnrO7] YES: ROM with Auxiliary-Input (ROM-AT)

The ROM methodology is blatantly false for most
natural and widely deployed applications when:

g Pr'epr'ocessing is allowed <« Strictly worse!
- The standard model adversary is non-uniform

Practical heuristics: for "natural” applications,
Security in ROM = Security in "standard model”
(for the best instantiation of O)

- Theoretical counter-examples [CGHO4, etc.]
“artificial” and don't affect widely used applications

Fixing Cracks in the Concrete

Rardon functian] 7 e
anaom tunctrion | =Me, : ‘90'%@
0:[N]->[M] Ao- S b|1-51

A;: T queries

online

« Ay computationally unbounded, gets entire RO,
and passes S bits of O-dependent advice to A,

— Becomes non-uniform advice when O instantiated

— Separating S and T for more accurate time-space
tradeoffs (e.g., for RAM attackers vs. circuits)

« ROM vs. standard model "separations” disappear!
Concrete bounds in ROM-AT are meaningful
against standard model non-uniform attackers!

Fixing Cracks in the Concrete

ROM-AT

Random function
O:[N]->[M]

A= (Ag, A1) .
Ao: S bits mmy'
A;: T queries

ROM-AT methodology: for "natural” applications,
Security in ROM-AI = Security in "standard model”
against non-uniform attackers
(for the best instantiation of O)

-

Security against any preprocessing attacks

Handling Auxiliary Input?

Problem: conditioned on S-bit “leakage”, values of
random oracle are not random and independent

Traditional ROM ROM-AI

Lazy Sampling /| [x
Programmability V| %)
Distinguishing- v %
to-Extraction

What the heck

Y,

W —

aml tlnin

Handling Auxiliary Input:
Pre-sampling [Unruh07]

» Intuition: conditioned on S-bit leakage, only

“few" values of O(x) are “heavily biased"
— A, can pass these "few" values as advice 1o A,

» The rest can be re-sampled fresh and
independent of the leakagel

— Lazy sampling, programmability, etc. all come back
as long as avoid the "few" pre-sampled points

Handling Auxiliary Input:
Pre-sampling [Unruh07]
Pre° = {(X1.y1)-.(Xp.Yp)}

Random Function

O:[N]->[M]

~NE

X

Random Function
R:[N]->[M] | Pre®

y=0(x)

-0
W

., if X=X,
R(x), o.w.

S bits about O, then T queries

Handling Auxiliary Input:
Pre-sampling [Unruh07]

Random Function
O:[N]->[M]

~NE

Pre® = {(x1,y1)....(Xp,Yp)}

Random Function
R:[N]->[M] | Pre®

* Pre®can depend on S-bit “leakage” z about O
— P is a free parameter optimized later (see below)

» But Ris random and independent on z

* How big is €?

[UnrO77: € < (ST/P)V/2

S bits about O, then T queries

Security of OWFs in ROM-AT

S bits, T queries

Random Function
O:[N]->[N]

~NE

|

|Pre |=P

Random Function
R:[N]->[N] | Pre°

Advantage < (ST/P)/? @

P=(5TN?)"3 = Advantage < (ST/N)3+ T/N

Does not match best generic attacks ® :
Advantage > ST/N+ T/N (if ST%N)

Our Motivating Question

Exact security for basic primitives?
(critical for ROM-AT methodology!)

XY

* Unruh's "pre-sampling conjecture” false
— For many apps (OWFs, MACs, etc.), pre-sampling
(as defined above) cannot give tight bounds
* New technique: Compression

— Apply to get nearly tight ROM-AT bounds for
OWFs, MACs, PRGs, PRFs, (salted) CRHFs ©

— Bounds much weaker than traditional ROM ®
(because there are non-uniform attacksl!)

» Salting provably defeats preprocessing
— Long-enough salt = ROM-ATI-sec. ~ ROM-sec.
— Possible way to reconcile theory and practicel

Our Results

Our Results %ﬁ{

* Salting provably defeats preprocessing!
— Long-enough salt = ROM-ATI-sec. ~ ROM-sec.
— Possible way to reconcile theory and practicel

Improve Pre-sampling ?

S bits, T queries

Random Function
O:[N]->[N]

« [UnrO77: € < (ST/P)V/2

~NE

|Pre® |=P

Random Function
R:[N]->[N] | Pre©®

— Can't get negl(n) security with P = poly(n) ®
—Conj: can get € = negl(n) for P = poly(n) ©
* Our result: € > Q(ST/P) === tight! [CDES17]
— Unruh's conjecture false (in this generality)

 Is it enough to prove tight security?

\via“dr'eam pre-sampl ing'}

Security of OWFs in ROM-AT!

S bits, T queries |Pre® |=P
Random Function| Random Function
O:[N]->[N] ~E R:[N]->[N] | Pre®

Advantage < (ST/P)"2. @

1/2 1/2

P = (STN2)".= Advantage < (ST/N) ¥+ T/N
Does not match best generic aTTack
Advantage > ST/N+ T/N (if ST%N)

o
Our New Technique dﬁf;//

Compression Paradigm [6T00,DTTIO]!

High advantage = Compressing RO

RO is impossible to compress

— Exact security bounds

Challenge: need to compress by more than S bitsl!

(salted) CRHFs

Pr[A° (Ap(O), a) = (%, x') s.t. x #x’, O(a,x) = O(a,x")]

Number of salts a
- O(S/KTTIM)

Optimal: can hardwire S collisions inside advice A,(O)

Idea: compress O(a,x’) using indices i,j € [T] and O(a,x)

of saved bits: |# of a succeeds| x (logM - 2logT)
= ¢K T?)

of spent bits: S + description of set {a | A succeeds} =
= S + log(K choose €K)

= S > eKlog (eM/eT?)
= e = O(S/K + T2/M)

The Order Issue

Consider 2 salts: O(a;,x;) = O(a;,%;) : O(a,,x,) = O(a,,x,")

Ideally, compress both O(a;,x;) and O(a,,x,")

Problem: what if A(z, a;) would query O(a,,x,) ??

(not so crazy because of advice z...)

Solution: run A on all salts a where he succeeds,
and keep track of "salt-specific” indices i, j, for
the first collision (which existsl!) on all such a's

V1

ROM-ATI Bounds for Basic Primitives

Primitive | 5 O
OWF* ST/N
PRG (ST/N)2
PRF (ST/NY2
MAC* ST/N

* Length preserving for simplicity

Always Better than Pre-sampling ©

Primitive Ou;oRl(‘)rl‘\;l-Al Pre-Sampling
OWF* ST/N (ST/N)V3
PRG (ST/N)V2 (ST/N)V3
PRF (ST/NY2 (ST/N)3
MAC* ST/N (ST/N)3

* Length preserving for simplicity

Nearly Tight ©

Primitive Ou;oRl(‘)rl‘\;l-Al Best Attack
OWF* ST/N Min(ST/N, (S2T/N2)1/3)
PRG (ST/N)V2 (ST/N)V2
PRF (ST/N)V/2 (ST/N)V/2
MAC* ST/N Min(ST/N, (S2T/N2)1/3)

* Length preserving for simplicity

But Much Weaker than ROM ®

Primitive Our ROM-AI Traditional
Bound ROM
OWF* ST/N T/N
PRG (ST/N)V2 T/N
PRF (ST/N)V/2 T/N
MAC* ST/N T/N

* Length preserving for simplicity

But Much Weaker than ROM ®

Non-uniform attackers
too stronglll

How to Defeat Preprocessing?

Extensively used in theory and practice:
Saw the magic for CRHFs already!

Chose random public salt after preprocessing;
Prepend as input to O

Security Bounds for Salting

O: [K]x [N] > [M]

Primitive Salted ROM-AI Traditional
Bound ROM
OWF* T/N + ST/KN T/N
PRG T/N + (ST/KN)1/2 T/N
PRF T/N + (ST/KN)1/2 T/N
MAC* T/N + ST/KN T/N
CRHF T2/M + S/K T2/M

* Length preserving for simplicity

Security Bounds for Salting

O: [K]x [N] > [M]

Primitive Salted ROM-AI Traditional
Bound ROM
OWF* T/N + T/N
PRG T/N+ (S e T/N
PRF T/N + (S e T/N
MAC* T/N + N T/N
CRHF T2/M + T2/M

* Length preserving for simplicity

Salting Provably helps!

At most n bits of salt yield ~ same security
in ROM with auxiliary input
as without auxiliary input

-

n-bit salt provably defeats preprocessing

|
o~
|
¢
.
»

N

.

Summary
« ROM-ATI is the new "cool kid" in town |

—very clean: just Sand T |

— addresses both theory (non-uniformity) and

practice (preprocessing)
— non-trivial, yet elegant proofs

— 1000's of ROM papers need re-evaluation |

 Obfuscation without the mess |

Thanks!

bacall

SearchiiD-Saban;294
Your proposal is written with clarity and conviction.
Send it up to legal for obfuscation.

Follow-Up Work [CDGS17]

Optimal Pre-Sampling Error ST/P

— Improves (ST/P)2 [UnruhQ7]

— Gives tight bounds for indistinguishability apps
New pre-sampling for unpredictability apps
— Matches compression for all current apps

Salting generically defeats preprocessing

Random Permutation and Ideal Cipher
with Auxiliary Input

Limitation of Pre-sampling

Random Function e Random Function
0O:[N]->{0,1} R:[N]->{0,1} | Pre®
$A=(AgA;) " |Pre|=P

Pr[AC (A (O))=1] - Pr[ARPre(A,(0))=1] > 1/24P
>1/2 + 1/3L1/2 =1/2 +P/2L L= 4P%1

Ao(O)=Marj(0y,..,0,) A;=lif Ay(O)= O,where i~[L]

Extending to large S, T

Extending to large T: xor first

Extending to large S: repeat on disjoint inputs

