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Indistinguishability

Obfuscation

(iO)/Functional 

Encryption

• Two-Round (Adaptive) Multi-Party 

Computation

• Instantiating Random Oracles

• Non-Interactive Multi-party Key Exchange

• Impossibility Results

• Theoretical Results (such as PPAD 

Hardness)

• Constant-Round Concurrent Zero 

Knowledge

• Separation Results for Circular Security

• Succinct Randomized Encodings

• Watermarking

• Patching
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Fine Grained Access to Private Data

Functional Encryption
[SW’05,GGHRSW13]

f

x

x

SKf should not allow adversary to 
compute anything other than f(x) !

MSK

f

Dec(                ,             ) = f(x) xf



Known Constructions?

[GGHRSW’13, BGKPS’14, Zim’15, GLSW’15, AB’15, GMMSSZ’16,
LV’16, L’16, AS’17, LT’17….]
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Are all candidates of iO broken? 

NO!

We have several unbroken iO candidates, 
including with proofs of security in various models. 
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Find a iO candidate that is secure 

even if only one of the candidates is secure.

Problem Statement:

Given any set of iO candidates, find a candidate that is secure

even if only one of the candidates is secure.  

Robust iO combiner:

In fact we only require the secure candidate to be correct
All other candidates can violate correctness

[AJNSY16, FHNS16]

Our Goal
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Robust iO Combiners
Let P = (P1, …, Pn) be any n iO candidates

• RCiO.Obf( P , C ) outputs C*.

• RCiO.Eval( P , C*, x ) outputs y. 

Security: If C0 is equivalent to C1,

RCiO.Obf( P , C0) ≈c RCiO.Obf( P , C1)

If there exists i in [n] such that Pi is correct and secure :
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Robust iO combiners imply universal iO [AJNSY’16]

Implications

Universal iO:

A scheme P is a universal iO scheme 

if iO exists then P is a secure iO scheme
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Previous Work
• AJNSY16 gave candidate construction of a 

robust combiner from DDH/LWE. 
• Required one candidate to be 

sub-exponentially secure.
• FHNS16 considers the case of combining 

unconditionally.

• Can we achieve some applications of iO if 
the secure candidate is polynomially secure?

• Can we weaken the assumptions to rely on 
only one-way functions?

Questions?
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This Work

Theorem 1 (Combiner -> Robust Combiner):
Given:

• An iO Combiner AND

• One-way function f, 

we construct a robust iO combiner

Previously, as observed in AJNSY’16 and BV’15, this
result required sub-exponential DDH/LWE 

and the underlying candidate to be sub-exponentially secure
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Given N candidates of primitive A=(A1,..,AN), 
such that one Ai is secure and correct, 

construct secure primitive B 
with efficiency polynomial in N.

Transforming Combiners

We show:
There exists a transforming robust combiner from iO

to Functional Encryption.
This also yields any primitive implied by FE 

(such as NIKE. [GPSZ17])
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Combiner to Robust 

Combiner: Idea 1

P’(C) works as follows:
1. Compute P(C)=C*
2. Sample x1, x2,..,xL, where L = k2

3. Check if C*(xi)=C(xi) for all i
4. If any check fails, output C, otherwise output C*

• For each obfuscation candidate P, construct modified 
candidate P’ that “self-checks for correctness”:

Pr{x,coins(P)} [C*(x)=C(x)] ≥ 1 - 1/k

Secure candidate is unchanged as it is correct.
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“Encrypt
Inputs” 
[BV’15]

• Consider a “special” circuit garbling  scheme  with  an 
additional property. 

• Such garbled circuits can be constructed from one-way 
functions.

For any equivalent circuits C0 and C1

Eval([C0],*)≅Eval([C1],*)

Removing dependency on x: 

Idea 2



Combining Ideas



Combining Ideas

1. Use the modified obfuscator to obfuscate Eval([C],*)
2. Release the encoding key MSK to the evaluator.



Combining Ideas

1. Use the modified obfuscator to obfuscate Eval([C],*)
2. Release the encoding key MSK to the evaluator.

For any x,
Pr{coins(P)} [C*(x)=C(x)] ≥ 1-2/k



Combining Ideas

1. Use the modified obfuscator to obfuscate Eval([C],*)
2. Release the encoding key MSK to the evaluator.

For any x,
Pr{coins(P)} [C*(x)=C(x)] ≥ 1-2/k

Perform BPP Amplification to
get almost correctness
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Theorem 2: Combining  iO

IDEA:

• No candidate should get the circuit in the clear.

• Every candidate should get a secret share of circuit C.

• On every input x, the candidates “jointly compute” C(x)

How to do 
this?

Use MPC 
Techniques!
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•Let C be the circuit to be obfuscated.
•Use a non-interactive MPC. 
•Secret share circuit C into C1,…,CN. Treat Ci as input to Pi.

•Obfuscate the circuit containing Ci and the pre-processed 
state using candidate Pi

Approach of AJNSY’16

MPC satisfying such properties are based on assumptions 
such as LWE/DDH [MW’16,BGI’17]

Can we weaken assumptions by relying on interactive MPC?
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Our Approach
• Secret share circuit  to (C1,..,CN) using additive

secret sharing.
• Treat each candidate as a party in interactive MP

Cprotocol. 
• Run the MPC protocol for U(C1+…+CN, x) to learn

C(x)
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How to evaluate MPC?

• Using candidate Pi obfuscate NextMsg(Ci, , *)

P1.Obf NextMsg1(C1,*) P2.Obf NextMsg2(C2,*)
We need exponentially many OTs. 
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(Random) OT

(r0,r1)
(r0,r1)

b
(b,rb)

P1
P2
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How to Implement OT?

• Use any OT protocol? Assumptions are stronger.

• Pre-process random OTs. Exponential pre-
processing required.

• Use PRF keys to generate OTs on the fly.
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Using PRF keys

But the PRF key Ki,j is obfuscated individually by 
both candidates Pi and Pj

K12

P2.Obf NextMsg2(C2,*)

K12

P1.Obf
NextMsg1(C1,*)
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Our Fix: Onion Combiner

P1.Obf ( )NextMsg1,2[K12]( )P2.Obf
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Further Ideas

• Several other problems: Handling malicious candidates, 
resetting attacks, avoiding stronger assumptions, ...

• FE allows us to avoid input-by-input arguments,
allows us to use only polynomial hardness.
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1. iO Combiner from polynomial hardness

2. Combiner for poly–hard Functional 
Encryption from OWF/DDH

Open Questions


