
Robust Transforming Combiners from iO

to Functional Encryption

Prabhanjan Ananth

Aayush Jain

Amit Sahai

Since 2013…

. . .

Indistinguishability

Obfuscation

(iO)/Functional

Encryption

• Two-Round (Adaptive) Multi-Party

Computation

• Instantiating Random Oracles

• Non-Interactive Multi-party Key Exchange

• Impossibility Results

• Theoretical Results (such as PPAD

Hardness)

• Constant-Round Concurrent Zero

Knowledge

• Separation Results for Circular Security

• Succinct Randomized Encodings

• Watermarking

• Patching

What is iO?

iO ()C C*

What is iO?

iO ()C C*

Correctness: for all x, C*(x) = C(x)

What is iO?

C0

C1

≡

What is iO?

iO ()C0

iO ()C1

≡

What is iO?

iO ()C0 C0*

iO ()C1 C1*

≡

What is iO?

iO ()C0 C0*

Security: ≈c

iO ()C1 C1*

≡

Fine Grained Access to Private Data

Functional Encryption
[SW’05,GGHRSW13]

x

Fine Grained Access to Private Data

Functional Encryption
[SW’05,GGHRSW13]

x

x

Fine Grained Access to Private Data

Functional Encryption
[SW’05,GGHRSW13]

x

x

Fine Grained Access to Private Data

Functional Encryption
[SW’05,GGHRSW13]

x

x

MSK

Fine Grained Access to Private Data

Functional Encryption
[SW’05,GGHRSW13]

f

x

x

MSK

Fine Grained Access to Private Data

Functional Encryption
[SW’05,GGHRSW13]

f

x

x

MSK

f

Fine Grained Access to Private Data

Functional Encryption
[SW’05,GGHRSW13]

f

x

x

MSK

f

Dec(,) = f(x) xf

Fine Grained Access to Private Data

Functional Encryption
[SW’05,GGHRSW13]

f

x

x

SKf should not allow adversary to
compute anything other than f(x) !

MSK

f

Dec(,) = f(x) xf

Known Constructions?

[GGHRSW’13, BGKPS’14, Zim’15, GLSW’15, AB’15, GMMSSZ’16,
LV’16, L’16, AS’17, LT’17….]

Are all candidates of iO broken?

NO!

Are all candidates of iO broken?

NO!

We have several unbroken iO candidates,
including with proofs of security in various models.

Find a iO candidate that is secure

even if only one of the candidates is secure.

Our Goal

Find a iO candidate that is secure

even if only one of the candidates is secure.

Problem Statement:

Given any set of iO candidates, find a candidate that is secure

even if only one of the candidates is secure.

Our Goal

Find a iO candidate that is secure

even if only one of the candidates is secure.

Problem Statement:

Given any set of iO candidates, find a candidate that is secure

even if only one of the candidates is secure.

t iO combiner

Our Goal

Find a iO candidate that is secure

even if only one of the candidates is secure.

Problem Statement:

Given any set of iO candidates, find a candidate that is secure

even if only one of the candidates is secure.

Robust iO combiner:

In fact we only require the secure candidate to be correct
All other candidates can violate correctness

[AJNSY16, FHNS16]

Our Goal

Robust iO Combiners
Let P = (P1, …, Pn) be any n iO candidates

Robust iO Combiners
Let P = (P1, …, Pn) be any n iO candidates

• RCiO.Obf(P , C) outputs C*.

Robust iO Combiners
Let P = (P1, …, Pn) be any n iO candidates

• RCiO.Obf(P , C) outputs C*.

• RCiO.Eval(P , C*, x) outputs y.

Robust iO Combiners
Let P = (P1, …, Pn) be any n iO candidates

• RCiO.Obf(P , C) outputs C*.

• RCiO.Eval(P , C*, x) outputs y.

If there exists i in [n] such that Pi is correct and secure :

Robust iO Combiners

Correctness: y = C(x)

Let P = (P1, …, Pn) be any n iO candidates

• RCiO.Obf(P , C) outputs C*.

• RCiO.Eval(P , C*, x) outputs y.

If there exists i in [n] such that Pi is correct and secure :

Robust iO Combiners
Let P = (P1, …, Pn) be any n iO candidates

• RCiO.Obf(P , C) outputs C*.

• RCiO.Eval(P , C*, x) outputs y.

Security: If C0 is equivalent to C1,

RCiO.Obf(P , C0) ≈c RCiO.Obf(P , C1)

If there exists i in [n] such that Pi is correct and secure :

Robust iO combiners imply universal iO [AJNSY’16]

Implications

Robust iO combiners imply universal iO [AJNSY’16]

Implications

Universal iO:

A scheme P is a universal iO scheme

if iO exists then P is a secure iO scheme

Previous Work

Previous Work
• AJNSY16 gave candidate construction of a

robust combiner from DDH/LWE.
• Required one candidate to be

sub-exponentially secure.
• FHNS16 considers the case of combining

unconditionally.

Previous Work
• AJNSY16 gave candidate construction of a

robust combiner from DDH/LWE.
• Required one candidate to be

sub-exponentially secure.
• FHNS16 considers the case of combining

unconditionally.

• Can we achieve some applications of iO if
the secure candidate is polynomially secure?

• Can we weaken the assumptions to rely on
only one-way functions?

Questions?

This Work

Theorem 1 (Combiner -> Robust Combiner):
Given:

• An iO Combiner AND

• One-way function f,

we construct a robust iO combiner

This Work

Theorem 1 (Combiner -> Robust Combiner):
Given:

• An iO Combiner AND

• One-way function f,

we construct a robust iO combiner

Previously, as observed in AJNSY’16 and BV’15, this
result required sub-exponential DDH/LWE

and the underlying candidate to be sub-exponentially secure

This Work

This Work
Theorem 2: Given:

• N correct iO Candidates (with one secure)

AND

• Any one-way function F,

we construct a compact FE scheme with complexity

poly(k,N) and polynomial security loss.

This Work
Theorem 2: Given:

• N correct iO Candidates (with one secure)

AND

• Any one-way function F,

we construct a compact FE scheme with complexity

poly(k,N) and polynomial security loss.

Corollary [AJ15,BV15]: There exists (sub-exponential)
universal iO if sub-exponential one-way functions exist.

This Work
Theorem 2: Given:

• N correct iO Candidates (with one secure)

AND

• Any one-way function F,

we construct a compact FE scheme with complexity

poly(k,N) and polynomial security loss.

Corollary [AJ15,BV15]: There exists (sub-exponential)
universal iO if sub-exponential one-way functions exist.

Transforming
Combiners

Given N candidates of primitive A=(A1,..,AN),
such that one Ai is secure and correct,

construct secure primitive B
with efficiency polynomial in N.

Transforming Combiners

Given N candidates of primitive A=(A1,..,AN),
such that one Ai is secure and correct,

construct secure primitive B
with efficiency polynomial in N.

Transforming Combiners

We show:
There exists a transforming robust combiner from iO

to Functional Encryption.
This also yields any primitive implied by FE

(such as NIKE. [GPSZ17])

Technical Overview

Combiner to Robust

Combiner: Idea 1

Combiner to Robust

Combiner: Idea 1
• For each obfuscation candidate P, construct modified

candidate P’ that “self-checks for correctness”:

Combiner to Robust

Combiner: Idea 1

P’(C) works as follows:

• For each obfuscation candidate P, construct modified
candidate P’ that “self-checks for correctness”:

Combiner to Robust

Combiner: Idea 1

P’(C) works as follows:
1. Compute P(C)=C*

• For each obfuscation candidate P, construct modified
candidate P’ that “self-checks for correctness”:

Combiner to Robust

Combiner: Idea 1

P’(C) works as follows:
1. Compute P(C)=C*
2. Sample x1, x2,..,xL, where L = k2

• For each obfuscation candidate P, construct modified
candidate P’ that “self-checks for correctness”:

Combiner to Robust

Combiner: Idea 1

P’(C) works as follows:
1. Compute P(C)=C*
2. Sample x1, x2,..,xL, where L = k2

3. Check if C*(xi)=C(xi) for all i

• For each obfuscation candidate P, construct modified
candidate P’ that “self-checks for correctness”:

Combiner to Robust

Combiner: Idea 1

P’(C) works as follows:
1. Compute P(C)=C*
2. Sample x1, x2,..,xL, where L = k2

3. Check if C*(xi)=C(xi) for all i
4. If any check fails, output C, otherwise output C*

• For each obfuscation candidate P, construct modified
candidate P’ that “self-checks for correctness”:

Combiner to Robust

Combiner: Idea 1

P’(C) works as follows:
1. Compute P(C)=C*
2. Sample x1, x2,..,xL, where L = k2

3. Check if C*(xi)=C(xi) for all i
4. If any check fails, output C, otherwise output C*

• For each obfuscation candidate P, construct modified
candidate P’ that “self-checks for correctness”:

Pr{x,coins(P)} [C*(x)=C(x)] ≥ 1 - 1/k

Combiner to Robust

Combiner: Idea 1

P’(C) works as follows:
1. Compute P(C)=C*
2. Sample x1, x2,..,xL, where L = k2

3. Check if C*(xi)=C(xi) for all i
4. If any check fails, output C, otherwise output C*

• For each obfuscation candidate P, construct modified
candidate P’ that “self-checks for correctness”:

Pr{x,coins(P)} [C*(x)=C(x)] ≥ 1 - 1/k

Secure candidate is unchanged as it is correct.

Removing dependency on x:

Idea 2

Removing dependency on x:

Idea 2

“Encrypt
Inputs”
[BV’15]

Removing dependency on x:

Idea 2

“Encrypt
Inputs”
[BV’15]

• Consider a “special” circuit garbling scheme with an
additional property.

Removing dependency on x:

Idea 2

“Encrypt
Inputs”
[BV’15]

• Consider a “special” circuit garbling scheme with an
additional property.

For any equivalent circuits C0 and C1

Eval([C0],*)≅Eval([C1],*)

Removing dependency on x:

Idea 2

“Encrypt
Inputs”
[BV’15]

• Consider a “special” circuit garbling scheme with an
additional property.

• Such garbled circuits can be constructed from one-way
functions.

For any equivalent circuits C0 and C1

Eval([C0],*)≅Eval([C1],*)

Removing dependency on x:

Idea 2

Combining Ideas

Combining Ideas

1. Use the modified obfuscator to obfuscate Eval([C],*)
2. Release the encoding key MSK to the evaluator.

Combining Ideas

1. Use the modified obfuscator to obfuscate Eval([C],*)
2. Release the encoding key MSK to the evaluator.

For any x,
Pr{coins(P)} [C*(x)=C(x)] ≥ 1-2/k

Combining Ideas

1. Use the modified obfuscator to obfuscate Eval([C],*)
2. Release the encoding key MSK to the evaluator.

For any x,
Pr{coins(P)} [C*(x)=C(x)] ≥ 1-2/k

Perform BPP Amplification to
get almost correctness

Theorem 2: Combining iO

IDEA:

Theorem 2: Combining iO

IDEA:

• No candidate should get the circuit in the clear.

Theorem 2: Combining iO

IDEA:

• No candidate should get the circuit in the clear.

• Every candidate should get a secret share of circuit C.

Theorem 2: Combining iO

IDEA:

• No candidate should get the circuit in the clear.

• Every candidate should get a secret share of circuit C.

• On every input x, the candidates “jointly compute” C(x)

Theorem 2: Combining iO

IDEA:

• No candidate should get the circuit in the clear.

• Every candidate should get a secret share of circuit C.

• On every input x, the candidates “jointly compute” C(x)

How to do
this?

Theorem 2: Combining iO

IDEA:

• No candidate should get the circuit in the clear.

• Every candidate should get a secret share of circuit C.

• On every input x, the candidates “jointly compute” C(x)

How to do
this?

Use MPC
Techniques!

Approach of AJNSY’16

•Let C be the circuit to be obfuscated.

Approach of AJNSY’16

•Let C be the circuit to be obfuscated.
•Use a non-interactive MPC.

Approach of AJNSY’16

•Let C be the circuit to be obfuscated.
•Use a non-interactive MPC.
•Secret share circuit C into C1,…,CN. Treat Ci as input to Pi.

Approach of AJNSY’16

•Let C be the circuit to be obfuscated.
•Use a non-interactive MPC.
•Secret share circuit C into C1,…,CN. Treat Ci as input to Pi.

•Obfuscate the circuit containing Ci and the pre-processed
state using candidate Pi

Approach of AJNSY’16

•Let C be the circuit to be obfuscated.
•Use a non-interactive MPC.
•Secret share circuit C into C1,…,CN. Treat Ci as input to Pi.

•Obfuscate the circuit containing Ci and the pre-processed
state using candidate Pi

Approach of AJNSY’16

MPC satisfying such properties are based on assumptions
such as LWE/DDH [MW’16,BGI’17]

•Let C be the circuit to be obfuscated.
•Use a non-interactive MPC.
•Secret share circuit C into C1,…,CN. Treat Ci as input to Pi.

•Obfuscate the circuit containing Ci and the pre-processed
state using candidate Pi

Approach of AJNSY’16

MPC satisfying such properties are based on assumptions
such as LWE/DDH [MW’16,BGI’17]

Can we weaken assumptions by relying on interactive MPC?

Our Approach

Our Approach

Our Approach
• Secret share circuit to (C1,..,CN) using additive

secret sharing.

Our Approach
• Secret share circuit to (C1,..,CN) using additive

secret sharing.
• Treat each candidate as a party in interactive MP

Cprotocol.

Our Approach
• Secret share circuit to (C1,..,CN) using additive

secret sharing.
• Treat each candidate as a party in interactive MP

Cprotocol.
• Run the MPC protocol for U(C1+…+CN, x) to learn

C(x)

How to evaluate MPC?

How to evaluate MPC?

• Using candidate Pi obfuscate NextMsg(Ci, , *)

How to evaluate MPC?

• Using candidate Pi obfuscate NextMsg(Ci, , *)

How to evaluate MPC?

• Using candidate Pi obfuscate NextMsg(Ci, , *)

P1.Obf P2.Obf

How to evaluate MPC?

• Using candidate Pi obfuscate NextMsg(Ci, , *)

P1.Obf NextMsg1(C1,*) P2.Obf NextMsg2(C2,*)

How to evaluate MPC?

• Using candidate Pi obfuscate NextMsg(Ci, , *)

P1.Obf NextMsg1(C1,*) P2.Obf NextMsg2(C2,*)
We need exponentially many OTs.

(Random) OT

P1
P2

(Random) OT

(r0,r1)

P1
P2

(Random) OT

(r0,r1)

b

P1
P2

(Random) OT

(r0,r1)
(r0,r1)

b

P1
P2

(Random) OT

(r0,r1)
(r0,r1)

b
(b,rb)

P1
P2

How to Implement OT?

How to Implement OT?

• Use any OT protocol? Assumptions are stronger.

How to Implement OT?

• Use any OT protocol? Assumptions are stronger.

• Pre-process random OTs. Exponential pre-
processing required.

How to Implement OT?

• Use any OT protocol? Assumptions are stronger.

• Pre-process random OTs. Exponential pre-
processing required.

• Use PRF keys to generate OTs on the fly.

Using PRF keys

Using PRF keys

K12

P2.Obf NextMsg2(C2,*)

Using PRF keys

K12

P2.Obf NextMsg2(C2,*)

K12

P1.Obf
NextMsg1(C1,*)

Using PRF keys

But the PRF key Ki,j is obfuscated individually by
both candidates Pi and Pj

K12

P2.Obf NextMsg2(C2,*)

K12

P1.Obf
NextMsg1(C1,*)

Using PRF keys

But the PRF key Ki,j is obfuscated individually by
both candidates Pi and Pj

K12

P2.Obf NextMsg2(C2,*)

K12

P1.Obf
NextMsg1(C1,*)

Using PRF keys

But the PRF key Ki,j is obfuscated individually by
both candidates Pi and Pj

K12

P2.Obf NextMsg2(C2,*)

K12

P1.Obf
NextMsg1(C1,*)

Using PRF keys

But the PRF key Ki,j is obfuscated individually by
both candidates Pi and Pj

K12

P2.Obf NextMsg2(C2,*)

K12

P1.Obf
NextMsg1(C1,*)

Our Fix: Onion Combiner

Our Fix: Onion Combiner

P1.Obf ()NextMsg1,2[K12]()P2.Obf

Further Ideas

Further Ideas

• Several other problems: Handling malicious candidates,
resetting attacks, avoiding stronger assumptions, ...

Further Ideas

• Several other problems: Handling malicious candidates,
resetting attacks, avoiding stronger assumptions, ...

• FE allows us to avoid input-by-input arguments,
allows us to use only polynomial hardness.

Further Ideas

• Several other problems: Handling malicious candidates,
resetting attacks, avoiding stronger assumptions, ...

• FE allows us to avoid input-by-input arguments,
allows us to use only polynomial hardness.

Open Questions

1. iO Combiner from polynomial hardness

Open Questions

1. iO Combiner from polynomial hardness

2. Combiner for poly–hard Functional
Encryption from OWF/DDH

Open Questions

