Improved Private Set Intersection against Malicious Adversaries
Private Set Intersection (PSI)

\[
X \cap Y
\]
Private Set Intersection (PSI)

\[X \cap Y \]
App: Contact discovery

Users \(\rightarrow \) PSI \(\rightarrow \) Contacts

\(X \cap Y \)
Oblivious Transfer (OT)

- Highly efficient and secure protocols exist.
- Motivates its use as the basis for PSI.
Bloom Filter

Plain text data structure similar to hash table

- Allows for testing set membership
- Parameterized by hash functions h_1, \ldots, h_k

- \[b[h_i(x)] = 1 \quad \forall i \]

\[b = \begin{array}{cccccccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array} \]
Bloom Filter

Plain $i(x) = 1$, $\forall i$

ext data structure similar to hash table
 - Allows for testing set membership
 - Parameterized by hash functions h_1, \ldots, h_k

• To insert x, set
 - $b_{h_i h_i(x)} = 1$, $\forall i$

$$b = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$
Bloom Filter

Plain \(i(x) = 1 \), \(\forall i \)

ext data structure similar to hash table
 - Allows for testing set membership
 - Parameterized by hash functions \(h_1, \ldots, h_k \)

• To insert \(x \), set
 • \(b \ h \ i \ h \ i (x) = 1 \), \(\forall i \)

\[
\begin{array}{c}
\text{b} = \\
0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}
\]
Bloom Filter

• Plain text data structure similar to hash table
 • Allows for testing set membership
 • Parameterized by hash functions $h_1, ..., h_n$

• To insert x, set
 • $b[h_i(x)] = 1$, $\forall i$

• To test membership
 • Return $\land_i b[h_i(x)]$

$b = \begin{array}{ccccccccccccccc}
0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}$
Bloom Filter

- Plain text data structure similar to hash table
 - Allows for testing set membership
 - Parameterized by hash functions h_1, \ldots, h_n

- To insert x, set
 - $b[h_i(x)] = 1$, $\forall i$

- To test membership
 - Return $\land_i b[h_i(x)]$

\[b = \begin{array}{cccccccccccc}
0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array} \]
Bloom Filter

\(n \) items → Bloom filter with \(m \) slots and \(k \) hash functions

- Membership:
 - \(\Pr[\text{false negatives}] = 0 \)
 - \((1 - e^{-kn/m})^k \)
 \[\approx 2^{-k} \]

\[
\begin{array}{cccccccccccccccccccccc}
0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}
\]

\(h_1(x) \) \hspace{1cm} h_2(x) \hspace{1cm} \ldots \hspace{1cm} h_k(x) \)
Bloom Filter

A Bloom filter with \(m \) slots and \(k \) hash functions

- Membership:
 - \(\Pr[\text{false negatives}] = 0 \)
 - \(\Pr[\text{false positives}] = (1 - e^{-kn/m})^k \approx 2^{-k} \)

\[b = \begin{array}{cccccccccccccc}
0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array} \]
Bloom Filter

\[\approx 2 - k \ 2 - k \ 2 - k \]
\[\approx 2 - k \ 2 - k \ 2 - k \]

\(k \ n \ m \ k k n n \ k n \ m \ m m \ k n \ m \ e - k n \ m \ 1 - e - k n \ m \ 1 - e - k n \ m \ k k \ 1 - e - k n \ m \ k \ e - k n \ m \ e e e - k n \ m \ --- 1 - e - k n \ m \ k \ 1 - e - k n \ m \ 1 n \ \text{items} \rightarrow \text{Bloom filter with } m \text{ slots and } k \text{ hash functions} \)

- Membership:
 \[\approx 2^{-k} \approx 2^{-k} \]

\[b = \begin{array}{ccccccccccccccccc}
0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\
\end{array} \]
Bloom Filter Intersection

- Bitwise AND $B_X \wedge B_Y$ is a Bloom filter for $X \cap Y$

$X = \{a, b\}$

B_X

$h_i(a)$

$h_i(b)$

$Y = \{a, c\}$

B_Y
Bloom Filter Intersection

- Bitwise AND $B_X \land B_Y$ is a Bloom filter for $X \cap Y$

$X = \{a, b\}$

B_X

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

$B_X \land B_Y$

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

$Y = \{a, c\}$

B_Y

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

$h_i(a)$

$h_i(b)$

$h_i(a)$

$h_i(c)$
Bloom Filter Protocol

$m_i \leftarrow \{0, 1\}^\kappa$

B_Y

$Y = \{a, c\}$

$h_i(a)$

$h_i(c)$
Bloom Filter Protocol

$m_i \leftarrow \{0, 1\}^\kappa$

[DongChenWen13, PinkasSchniederZohner14]
Bloom Filter Protocol

Garbled Bloom filter

\[B_Y \]

\[Y = \{a, c\} \]

[Garbled Bloom filter]

[DongChenWen13, PinkasSchniederZohner14]
Bloom Filter Protocol

\[X = \{ a, b \} \]

\[B_X \]

\[
\begin{array}{c|c}
\hline
& m_0 & m_1 & m_2 & m_3 & m_4 & m_5 & m_6 \\
\hline
\hline
1 & \perp & \perp & 1 & \perp & \perp & 1 & \perp \\
\hline
\end{array}
\]

\[X = \{ a, b \} \]

\[B_Y \]

\[
\begin{array}{c|c}
\hline
& m_0 & m_1 & m_2 & m_3 & m_4 & m_5 & m_6 \\
\hline
\hline
1 & \perp & \perp & \perp & 1 & \perp & 1 & \perp \\
\hline
\end{array}
\]

Garbled Bloom filter

[DongChenWen13, PinkasSchniederZohner14]
Bloom Filter Protocol

$X = \{a, b\}$

B_X

B_Y

$Y = \{a, c\}$

$\hat{X} = \{m_0 \oplus m_5, m_2 \oplus m_3\}$

Garbled Bloom filter

[DongChenWen13, PinkasSchniederZohner14]
Bloom Filter Protocol

\(X = \{a, b\}\)

\(B_X\)

\(h_i(a)\)

\(h_i(b)\)

\(\widehat{X} = \{m_0 \oplus m_5, m_2 \oplus m_3\}\)

Garbled Bloom filter

\(Y = \{a, c\}\)

\(B_Y\)

\(h_i(a)\)

\(h_i(c)\)

Output the intersection

\(\widehat{X} \cap \{m_0 \oplus m_5, m_3 \oplus m_6\}\)
Semi-Honest Security

Naturally secure against Sender:

- OT hides select bits
- Final message sent to Receiver

- \(\notin Y \), Receiver learns encoding
e.g. \(\text{Encode}(y') = m_3 \oplus m_4 \)

- DCW13 show equivalence to false positive in standard bloom filter
 - \(\Pr[\text{false positives}] \approx 2^{-k} \)

\[
\begin{align*}
X &= \{a, b\} \\
Y &= \{a, c\} \\
\hat{X} &= \{m_0 \oplus m_5, m_2 \oplus m_3\} \\
\hat{X} \cap \{m_0 \oplus m_5, m_3 \oplus m_6\}
\end{align*}
\]
Semi-Honest Security

[DongChenWen13, PinkasSchniederZohner14]

\(y' \notin YY \), Receiver learns encoding

Naturally secure against Sender:

- OT hides select bits
- Final message sent to Receiver

- Secure against Receiver
 - Attack: For \(y'' \notin Y \), Receiver learns encoding

 e.g. \(\text{Encode}(y') = m_3 \oplus m_4 \)

- DCW13 show equivalence to false positive in standard bloom filter
 - \(\Pr[\text{false positives}] \approx 2^{-k} \)
Semi-Honest Security

\[m_0 \oplus m_3 \]
\[m_1 \]
\[m_2 \]
\[\vdots \]
\[m_5 \]
\[m_6 \]

\[X = \{a, b\} \]
\[Y = \{a, c\} \]

\[Y = \{a, c\} \]
\[h_i(a) \]
\[h_i(c) \]

\[\text{Output:} \]
\[\hat{X} = \{m_0 \oplus m_5, m_2 \oplus m_3\} \]
\[\hat{X} \cap \{m_0 \oplus m_5, m_3 \oplus m_6\} \]

\[\text{e.g.}\]
\[\text{Encode } y' y y' = m \ 3 \ m \ 3 \ 3 \ m \ 3 \ \oplus \]
\[m \ 4 \ m \ 4 \ m \ 4 \ m \ 4 \]

\[y' \notin YY, \text{ Receiver learns encoding} \]

Naturally secure against Sender.
- OT hides select bits
- Final message sent to Receiver

- Secure against Receiver
 \[\text{ncode}(y') = m_3 \oplus m_4 \text{ e.g.} \]
 \[\text{Encode}(y') = m_3 \oplus m_4 \]

- DCW13 show equivalence to false positive in standard bloom filter
 \[\text{Pr[false positives]} \approx 2^{-k} \]
Semi-Honest Security

\[Y = \{a, c\} \]

\[\begin{array}{c|c}
\hline
0 & m_0 \\
1 & m_1 \\
0 & m_2 \\
1 & m_3 \\
0 & m_4 \\
1 & m_5 \\
0 & m_6 \\
\hline
\end{array} \]

\[h_i(a) \]
\[h_i(c) \]

\[\begin{array}{c|c}
\hline
0 & m_0 \\
1 & m_1 \\
0 & m_2 \\
1 & m_3 \\
0 & m_4 \\
1 & m_5 \\
0 & m_6 \\
\hline
\end{array} \]

\[h_i(a) \]
\[h_i(c) \]

Output:

\[\hat{X} = \{m_0 \oplus m_5, m_2 \oplus m_3\} \]

\[\hat{X} \cap \{m_0 \oplus m_5, m_3 \oplus m_6\} \]

e.g. Encode \(y'\) \(y'y' = m_3 m_4 m_3 m_3 \oplus m_4 m_4 m_4 m_4 \)

\(y' \notin YY \), Receiver learns encoding

Naturally secure against Sender.

- OT hides select bits
- Final message sent to Receiver

Secure against Receiver

\[\text{ncode}(y') = m_3 \oplus m_4 \]

\[\text{Encode}(y') = m_3 \oplus m_4 \]

e.g.

- DCW13 show equivalence to false positive in standard bloom filter
- DCW13 show equivalence to false positive in standard bloom filter
 - \(\Pr[\text{false positives}] \approx 2^{-k} \)
Semi-Honest Security

2 \kappa 2 2 \kappa 2 \kappa 2 \kappa

e.g. Encode \(y' yy' y' = m_3 m_3 m_3 m_4 m_4 m_4 m_4 m_4 m_4 m_4 \)

\(y' \notin YY \), Receiver learns encoding

Naturally secure against Sender.
- OT hides select bits
- Final message sent to Receiver

- Secure against Receiver
 \(\text{encode}(y') = m_3 \oplus m_4 \)
e.g. Encode \(y' = m_3 \oplus m_4 \)

- DCW13 show equivalence to false positive in standard bloom filter
 - \(\Pr[\text{false positives}] \approx 2^{-k} \)
 - \(\Pr[\text{false positives}] \approx 2^{-k} \)
Malicious Receiver

Insecure against Receiver

- Bloom filter
- Receiver will obtain all \(m_i \)
- Can probe for \(m_2 \oplus m_3 \)

\[
\begin{align*}
X &= \{a, b\} \\
Y &= \{a, c\}
\end{align*}
\]

\[
\begin{array}{c|c}
\downarrow & m_0 \\
\hline
m_1 & m_1 \\
\hline
m_2 & m_2 \\
\hline
\vdots & \vdots \\
\hline
m_4 & m_4 \\
\hline
m_5 & m_5 \\
\hline
\downarrow & m_6 \\
\end{array}
\quad
\begin{array}{c|c|c}
\downarrow & 1 \\
\hline
1 & 1 \\
\hline
\hline
1 & 1 \\
\hline
\end{array}
\]

Output:

\[
\hat{X} = \left\{ m_0 \oplus m_5, m_2 \oplus m_3 \right\}
\]

\[
\hat{X} \cap \left\{ m_0 \oplus m_5, m_3 \oplus m_6 \right\}
\]
Malicious Receiver

Bloom filter

Insecure against Receiver

- Consider all 1 Bloom filter
- Receiver will obtain all m_i
- Can probe for $m_2 \oplus m_3$

\[
\begin{align*}
X &= \{a, b\} \\
Y &= \{a, c\}
\end{align*}
\]

\[
\begin{array}{c|c}
 & m_0 & m_1 & m_2 & m_3 & m_4 & m_5 & m_6 \\
\hline
\bot & \bot & m_1 & m_2 & m_3 & m_4 & m_5 & m_6 \\
\end{array}
\]

\[
\begin{array}{c|c}
 & m_0 & m_1 & m_2 & m_3 & m_4 & m_5 & m_6 \\
\hline
\bot & \bot & \bot & \bot & 1 & \bot & 1 & 1 \\
\end{array}
\]

Output:

\[
\begin{align*}
\hat{X} &= \{m_0 \oplus m_5, m_2 \oplus m_3\} \\
\hat{X} \cap \{m_0 \oplus m_5, m_3 \oplus m_6\}
\end{align*}
\]
Malicious Receiver

Bloom filter

Insecure against Receiver

- Receiver will obtain all m_i
- $i i i$
- Receiver will obtain all m_i
- Can probe for $m_2 \oplus m_3$

\[
X = \{a, b\}
\]
\[
Y = \{a, c\}
\]

\[
\begin{array}{c|c|c|c|c|c|c|c}
\hline
& m_0 & m_1 & m_2 & m_3 & m_4 & m_5 & m_6 \\
\hline
\hline
\bot & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
m_0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
m_1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
m_2 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
m_3 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
m_4 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
m_5 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
m_6 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline
\end{array}
\]

\[
\begin{array}{c|c|c|c|c|c}
\hline
\hline
m_0 \oplus m_5 & 1 \\
m_2 \oplus m_3 & 1 \\
\hline
\end{array}
\]

Output:

\[
\hat{X} = \{m_0 \oplus m_5, m_2 \oplus m_3\}
\]

\[
\hat{Y} \cap \{m_0 \oplus m_5, m_3 \oplus m_6\}
\]
Malicious Receiver

$m \in \{m_0, m_1, m_2, \ldots, m_6\}$

Bloom filter

Insecure against Receiver

- Receiver will obtain all $m \ i$
- Can probe for $m_2 \oplus 2 \ 2 \ 2 \oplus m_3$
- Receiver will obtain all m_i
- Can probe for $m_2 \oplus m_3$

\[
X = \{a, b\} \\
Y = \{a, c\} \\
\begin{array}{c|c}
\downarrow & m_0 \\
& m_1 \\
& m_2 \\
& m_3 \\
& m_4 \\
& m_5 \\
\downarrow & m_6 \\
\end{array} \\
\begin{array}{c|c}
& m_0 \\
& m_1 \\
& m_2 \\
& m_3 \\
& m_4 \\
& m_5 \\
& m_6 \\
\end{array}
\]

Output:

\[
\hat{X} = \{m_0 \oplus m_5, m_2 \oplus m_3\} \\
\hat{X} \cap \{m_0 \oplus m_5, m_3 \oplus m_6\}
\]
Warm-Up: The DongChenWen13 Approach

Goal — restrict the Receiver to a valid Bloom filter
- Bits contains \(\frac{1}{2} m \) ones

- Make Receiver prove zero choice bits
 - Sample random key \(s \leftarrow \{0,1\}^\kappa \)
 - Generate a \(\frac{m}{2} \) out of \(m \) secret sharing of \(s \)
 - \(s_1, \ldots, s_m \)

- Transmit \(s_i \) as the \(i \)th zero OT message
- Encrypt summary values with \(s \)
Warm-Up: The DongChenWen13 Approach

1 2 2 1 2 mm ones

Goal — restrict the Receiver to a valid Bloom filter
- Bloom filter of m bits contains 1 2 m ones
- Make Receiver prove zero choice bits
 - Sample random key $s \leftarrow \{0,1\}^\kappa$
 - Generate a $\frac{m}{2}$ out of m secret sharing of s
 - s_1, \ldots, s_m
 - Transmit s_i as the ith zero OT message
 - Encrypt summary values with s

\[
X = \{a, b\} \quad \quad Y = \{a, c\}
\]

\[
\begin{array}{c|c|c}
\top & m_0 & m_1 \\
\hline
 & m_1 & m_2 \\
\vdots & m_3 & m_4 \\
\hline
 & m_4 & m_5 \\
\hline
\top & m_6 & m_7 \\
\end{array}
\]

Output:

\[
\hat{X} = \{m_0 \oplus m_5, m_2 \oplus m_3\} \quad \quad \hat{Y} = \{m_0 \oplus m_5, m_3 \oplus m_6\}
\]

\[
h_i(a) \quad h_i(c)
\]
Warm-Up: The DongChenWen13 Approach

0,1 κ 0,1 0,1 0,1 κ κ κ 0,1 κ
1 2 2 1 2 m m ones

Goal — restrict the Receiver to a valid Bloom filter
- Bloom filter of m bits contains 1 2 m ones
- Make Receiver prove zero choice bits
 - Sample random key \(s \leftarrow \{0,1\}^\kappa \)
 - Sample random key \(s \leftarrow \{0,1\}^\kappa \)
 - Generate a \(\frac{m}{2} \) out of m secret sharing of \(s \)
 - \(s_1, \ldots, s_m \)
 - Transmit \(s_i \) as the \(i \)th zero OT message
 - Encrypt summary values with \(s \)

\[
\begin{align*}
Y = \{a, c\} \\
X = \{a, b\}
\end{align*}
\]

Output:

\[
\hat{X} = \{m_0 \oplus m_5, m_2 \oplus m_3\} \\
\hat{X} \cap \{m_0 \oplus m_5, m_3 \oplus m_6\}
\]

\[
\begin{array}{|c|c|}
\hline
m_0 & 1 \\
\hline
m_1 & 1 \\
\hline
m_2 & 1 \\
\hline
m_3 & 1 \\
\hline
m_4 & 1 \\
\hline
m_5 & 1 \\
\hline
m_6 & 1 \\
\hline
\end{array}
\]
Warm-Up: The DongChenWen13 Approach

\(s_1, \ldots, s_m \)

\(m \) out of \(mm \) secret sharing of \(ss \)

\(0, 1 \leq 0, 1, 0, 1, 0, 1, 0, 1 \leq \kappa \)

\(1, 2, 1, 2, mm \) ones

Goal — restrict the Receiver to a valid Bloom filter

- Bloom filter of \(m \) bits contains \(1, 2, m \) ones

- Make Receiver prove zero choice bits
 - \(s_1, 1, 1, \ldots, s_m \)
 - Sample random key \(s \leftarrow \{0,1\}^\kappa \)
 - Generate a \(\frac{m}{2} \) out of \(m \) secret sharing of \(s \)
 - \(s_1, \ldots, s_m \)

- Transmit \(s_i \) as the \(i \)th zero OT message
- Encrypt summary values with \(s \)
Warm-Up: The DongChenWen13 Approach

as the \(i\)th zero OT message

\(s_1, \ldots, s_m\) secret sharing of \(s\)

\(m\) 2 out of \(mm\) bits contains \(1\) \(2m\) ones

Goal — restrict the Receiver to a valid Bloom filter

* Bloom filter of \(m\) bits contains 1 \(2m\) ones
* Make Receiver prove zero choice bits
 * \(s_1, \ldots, s_m\)
 * Transmit \(s_i\) as the \(i\)th zero OT message
 * Generate a \(\frac{m}{2}\) out of \(m\) secret sharing of \(s\)
 * \(s_1, \ldots, s_m\)
 * Transmit \(s_i\) as the \(i\)th zero OT message
 * Encrypt summary values with \(s\)
Warm-Up: The DongChenWen13 Approach

as the ith zero OT message
$s_1,..., s_m s s s m m m s m$
m 2 out of mm secret sharing of ss
$0,1 \kappa 0,1 0,1 0,1 \kappa \kappa \kappa 0,1 \kappa$

Goal — restrict the Receiver to a valid Bloom filter
- Bloom filter of m bits contains 1 $2 m$ ones
- Make Receiver prove zero choice bits
 - $s_1 1 1, ..., s_m$
 - Encrypt summary values with s Generate a $\frac{m}{2}$ out of m secret sharing of s
 - $s_1, ..., s_m$
 - Transmit s_i as the ith zero OT message
 - Encrypt summary values with s

$$X = \{a, b\}$$

$$Y = \{a, c\}$$

- Transmit s_i as the ith zero OT message
 - Encrypt summary values with s
- Make Receiver prove zero choice bits
 - $s_1 1 1, ..., s_m$
 - Encrypt summary values with s
Warm-Up: The DongChenWen13 Approach

as the ith zero OT message

$s \ 1, \ldots, \ s \ m \ s \ s \ s \ m \ m \ m \ s \ m$

$m \ 2$ out of mm secret sharing of ss

$0,1 \ \kappa \ 0,1 \ 0,1 \ 0,1 \ \kappa \ \kappa \ 0,1 \ \kappa$

1 2 2 1 2 mm ones

Goal — restrict the Receiver to a valid Bloom filter

• Bloom filter of m bits contains 1 2 m ones

• Make Receiver prove zero choice bits

 • $s \ 1 \ 1 , \ \ldots, \ s \ m$

 • Encrypt summary values with s

 Generate a $\frac{m}{2}$ out of m secret sharing of s

 • s_1, \ldots, s_m

• Transmit s_i as the ith zero OT message

• Encrypt summary values with s

$X = \{a, b\}$

$Y = \{a, c\}$

\[
\begin{array}{c|c}
 s_0 & m_0 \\
 s_1 & m_1 \\
 s_2 & m_2 \\
 s_3 & m_3 \\
 s_4 & m_4 \\
 s_5 & m_5 \\
 s_6 & m_6 \\
\end{array}
\]

\[
X = \{m_0 \oplus m_5, m_2 \oplus m_3\}
\]

\[
Y = \{m_0 \oplus m_5, m_3 \oplus m_6\}
\]

Output:

$\mathbb{D}_s (X) \cap \{m_0 \oplus m_5, m_3 \oplus m_6\}$
as the ith zero OT message

$s_1, ..., s_m s s s m m m s m$

m 2 out of mm secret sharing of $s s$

$0,1 \kappa 0,1 0,1 0,1 \kappa \kappa 0,1 \kappa$

Goal — restrict the Receiver to a valid Bloom filter

• Bloom filter of m bits contains 12 m ones

• Make Receiver prove zero choice bits

 • $s_1 1 1, ..., s_m$

 • Encrypt summary values with s

• Transmit s_i as the ith zero OT message

• Encrypt summary values with s

\[
\begin{align*}
X &= \{a, b\} \\
Y &= \{a, c\}
\end{align*}
\]

\[
\begin{array}{c|c}
 & m_0 \\
\hline
s_0 & m_0 \\
s_1 & m_1 \\
s_2 & m_2 \\
s_3 & m_3 \\
s_4 & m_4 \\
s_5 & m_5 \\
s_6 & m_6
\end{array}
\]

\[
\begin{align*}
X = \{a, b\} & \quad \text{Output:} \\
Y = \{a, c\} & \quad \mathbb{D}_s (X) \cap \{m_0 \oplus m_5, m_3 \oplus m_6\}
\end{align*}
\]
Warm-Up: The DongChenWen13 Approach

- **Goal** — restrict the Receiver to a valid Bloom filter
 - Bloom filter of m bits contains $\frac{1}{2}m$ ones
- **Make Receiver prove zero choice bits**
 - Sample random key $s \leftarrow \{0,1\}^\kappa$
 - Generate a $\frac{m}{2}$ out of m secret sharing of s
 - $s_1, ..., s_m$
 - Transmit s_i as the ith zero OT message
 - Encrypt summary values with s

Table:

<table>
<thead>
<tr>
<th>s_0</th>
<th>m_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>m_1</td>
</tr>
<tr>
<td>s_2</td>
<td>m_2</td>
</tr>
<tr>
<td>s_3</td>
<td>m_3</td>
</tr>
<tr>
<td>s_4</td>
<td>m_4</td>
</tr>
<tr>
<td>s_5</td>
<td>m_5</td>
</tr>
<tr>
<td>s_6</td>
<td>m_6</td>
</tr>
</tbody>
</table>

Output:

$X = \{a, b\}$

$Y = \{a, c\}$
Is this secure?

- \(\frac{m}{2} \) ones
- Selective failure attack by the Sender...

\[
Y = \{a, c\}
\]

\[
X = \{a, b\}
\]

\[
\begin{array}{cccc}
 s_0 & m_0 \\
 s_1 & m_1 \\
 s_2 & m_2 \\
 s_3 & m_3 \\
 s_4 & m_4 \\
 s_5 & m_5 \\
 s_6 & m_6 \\
\end{array}
\]

\[
\begin{array}{cccc}
 m_0 & 1 \\
 s_1 & 0 \\
 s_2 & 0 \\
 s_3 & 1 \\
 s_4 & 0 \\
 m_5 & 1 \\
 m_6 & 1 \\
\end{array}
\]

Output:

\[
\bar{X} = E_s \left(\left\{ m_0 \oplus m_5, m_2 \oplus m_3 \right\} \right) \quad D_s(\bar{X}) \cap \left\{ m_0 \oplus m_5, m_3 \oplus m_6 \right\}
\]
Warm-Up: The DongChenWen13 Approach

$m \leq \frac{m}{2}$ ones

Is this secure?

- Receiver is forced to use $\leq \frac{m}{2}$ ones
- Selective failure attack by the Sender...

\[
X = \{a, b\}
\]
\[
Y = \{a, c\}
\]

Output:

\[
\hat{X} = \mathbb{E}_s \left(\left\{ m_0 \oplus m_5, m_2 \oplus m_3 \right\} \right) \cap \mathbb{D}_s (\hat{X}) \cap \left\{ m_0 \oplus m_5, m_3 \oplus m_6 \right\}
\]
Warm-Up: The DongChenWen13 Approach

$m \ 2 \ mm \ m \ 2 \ 2 \ m \ 2 \ ones$

Is this secure?

• Selective failure attack by the Sender…
 Selective failure attack by the Sender…

\[
\begin{array}{c|c}
 s_0 & m_0 \\
 s_1 & m_1 \\
 s_2 & m_2 \\
 s_3 & m_3 \\
 s_4 & m_4 \\
 s_5 & m_5 \\
 s_6 & m_6 \\
\end{array}
\]

\[
\begin{array}{c|c}
 & m_0 \\
 s_0 & 0 \\
 s_1 & 0 \\
 s_2 & 1 \\
 s_3 & 0 \\
 s_4 & 1 \\
 m_5 & 1 \\
 m_6 & 1 \\
\end{array}
\]

Output:

\[
\mathcal{X} = \mathbb{E}_s \left(\left\{ m_0 \oplus m_5, m_2 \oplus m_3 \right\} \right) \rightarrow \mathcal{D}_s (\mathcal{X}) \cap \left\{ m_0 \oplus m_5, m_3 \oplus m_6 \right\}
\]

[Rindal Rosulek 17, Lambaek 17]
Warm-Up: The DongChenWen13 Approach

• Is this secure?
 • Receiver is forced to use $\leq \frac{m}{2}$ ones
 • Selective failure attack by the Sender…

• Example Attack:
 • replace s_4 with random value r

$Y = \{a, c\}$

Output:

$\hat{X} = \mathbb{E}_s (\{m_0 \oplus m_5, m_2 \oplus m_3\}) \xrightarrow{\mathcal{D}_s (\hat{X})} \{m_0 \oplus m_5, m_0 \oplus m_5, m_3 \oplus m_6\}$

[RindalRosulek17, Lambaek17]
Warm-Up: The DongChenWen13 Approach

Is this secure?

• Receiver is forced to use $\leq \frac{m}{2}$ ones
• Selective failure attack by the Sender...

• Example Attack:
 • replace s_4 with random value r
 • Can not reconstruct s if r is picked up

• $\forall y \in Y : h_i(y) \neq 4$
• Can not be simulated!

$X = \{a, b\}$

$Y = \{a, c\}$

Output:

$X = \mathbb{E}_s \left(\{m_0 \oplus m_5, m_2 \oplus m_3\} \right)$

$\mathbb{D}_s(X) \cap \{m_0 \oplus m_5, m_3 \oplus m_6\}$

[RindalRosulek17, Lambaek17]
Warm-Up: The DongChenWen13 Approach

∀y ∈ Y : h_i h_i i h i y y y y ≠ 4

Is this secure?

- Receiver is forced to use \(\leq \frac{m}{2} \) ones
- Selective failure attack by the Sender...

- Example Attack:
 - replace \(s_4 \) with random value \(r \)
 - Can not reconstruct \(s \) if \(r \) is picked up
 - Can not be simulated! Can not be simulated!
Cut and Choose Approach

Make Receiver p

<table>
<thead>
<tr>
<th></th>
<th>r_0</th>
<th>m_0</th>
<th>r_1</th>
<th>m_1</th>
<th>r_2</th>
<th>m_2</th>
<th>r_3</th>
<th>m_3</th>
<th>r_4</th>
<th>m_4</th>
<th>r_5</th>
<th>m_5</th>
<th>r_6</th>
<th>m_6</th>
<th>r_7</th>
<th>m_7</th>
<th>r_8</th>
<th>m_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

[Random]

[1] Rindal Rosulek 17
Cut and Choose Approach

Make Receiver p

• Sender challenges on a subset of OT
 • Receiver must reveal select bits

\[RindalRosulek17 \]
Cut and Choose Approach

Make Receiver p

• Sender challenges on a subset of OT
 • Receiver must reveal select bits

[Ref: RindalRosulek17]
Cut and Choose Approach

- Make Receiver \(p = 2 \) zero bits, aborts otherwise
 - Sender challenges on a subset of OT
 - Receiver must reveal select bits
 - Expect to see 12 zero bits, aborts otherwise

\[
\begin{array}{cc}
r_0 & m_0 \\
r_1 & m_1 \\
r_2 & m_2 \\
r_3 & m_3 \\
r_4 & m_4 \\
r_5 & m_5 \\
r_6 & m_6 \\
r_7 & m_7 \\
r_8 & m_8 \\
\end{array}
\]

\[
\begin{array}{cc}
r_0 & 0 \\
r_1 & 1 \\
r_2 & 0 \\
m_3 & 1 \\
m_4 & 1 \\
m_5 & 0 \\
m_6 & 1 \\
m_7 & 0 \\
m_8 & 1 \\
\end{array}
\]

[RindalRosulek17]
Cut and Choose Approach

- Make Receiver prove zero bits in an input-independent way
- Receiver uses \textit{random} OT select bits
- Sender challenges on a subset of OT
 - Receiver must reveal select bits
 - Expect to see $\frac{1}{2}$ zero bits, aborts otherwise

\[\begin{array}{c|c} r_0 & m_0 \\ r_1 & m_1 \\ r_3 & m_3 \\ r_4 & m_4 \\ r_5 & m_5 \\ r_7 & m_7 \\ r_8 & m_8 \\ \end{array} \quad \begin{array}{c|c} r_0 & 0 \\ m_1 & 1 \\ m_3 & 1 \\ m_4 & 1 \\ m_5 & 0 \\ m_7 & 0 \\ m_8 & 1 \\ \end{array} \]
Cut and Choose Approach

- Issue: Remaining OTs do not form valid Bloom filter

\[Y = \{a, c\} \]

\[
\begin{array}{c|c}
 r_0 & m_0 \\
 r_1 & m_1 \\
 r_3 & m_3 \\
 r_4 & m_4 \\
 r_5 & m_5 \\
 r_7 & m_7 \\
 r_8 & m_8 \\
\end{array}
\]

\[
\begin{array}{c|c}
 r_0 & m_0 \\
 r_1 & m_1 \\
 r_3 & m_3 \\
 r_4 & m_4 \\
 r_5 & m_5 \\
 r_7 & m_7 \\
 r_8 & m_8 \\
\end{array}
\]

\[
\begin{array}{c|c}
 r_0 & 0 \\
 r_1 & 1 \\
 r_3 & 1 \\
 r_4 & 1 \\
 r_5 & 0 \\
 r_7 & 0 \\
 r_8 & 1 \\
\end{array}
\]

\(h_i(a) \)

\(h_i(c) \)
Cut and Choose Approach

\[Y = \{a, c\} \]

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_0)</td>
<td>(m_0)</td>
<td>(r_1)</td>
<td>(m_1)</td>
</tr>
<tr>
<td>(r_3)</td>
<td>(m_3)</td>
<td>(r_4)</td>
<td>(m_4)</td>
</tr>
<tr>
<td>(r_5)</td>
<td>(m_5)</td>
<td>(r_7)</td>
<td>(m_7)</td>
</tr>
<tr>
<td>(r_8)</td>
<td>(m_8)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[r_0 \overline{m_0} \]

\[r_1 \overline{m_1} \]

\[r_3 \overline{m_3} \]

\[r_4 \overline{m_4} \]

\[r_5 \overline{m_5} \]

\[r_7 \overline{m_7} \]

\[r_8 \overline{m_8} \]

\[h_i(a) \]

\[h_i(c) \]

[Reference: Rindal and Rosulek 2017]
Cut and Choose Approach

Random OTs → desired BF

- Randomly permute OTs to form Bloom filter
 - π random OTs → desired BF
Cut and Choose Approach

- Issue: Remaining OTs do not form valid Bloom filter
- Constructs desired Bloom filter
- Randomly permute OTs to form Bloom filter
 - π (random OTs) \rightarrow desired BF

\[Y = \{a, c\} \]

\[
\begin{array}{c|c|c}
| r_4 | m_4 | \hline
| r_1 | m_1 | 1 \hline
| r_3 | m_3 | 1 \hline
| r_0 | m_0 | 0 \hline
| r_5 | m_5 | 0 \hline
| r_7 | m_7 | 0 \hline
| r_8 | m_8 | 1 \hline
\end{array}
\]

\[
\begin{array}{c|c|c}
| m_4 | \hline
| m_1 | 1 \hline
| m_3 | 0 \hline
| r_0 | 0 \hline
| r_5 | 0 \hline
| r_7 | 1 \hline
| m_8 | 1 \hline
\end{array}
\]

π
Cut and Choose Approach

- **Issue**: Remaining OTs do not form valid Bloom filter
- **Constructs desired Bloom filter**
- **Randomly permute OTs to form Bloom filter**
 - \(\pi(\text{random } OTs) \rightarrow \text{desired } BF \)

\[
Y = \{a, c\}
\]

\[
\begin{array}{c|c|c|c|c}
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
\end{array}
\]

\(\pi \)
Cut and Choose Approach

- **Issue**: Remaining OTs do not form valid Bloom filter
- **Constructs desired Bloom filter**
- **Randomly permute OTs to form Bloom filter**
 - π(random OTs) \to desired BF

- $Y = \{a, c\}$

\[
\begin{array}{c c c}
 r_4 & m_4 & r_0 \\
 r_0 & m_0 & r_7 \\
 r_7 & m_7 & r_5 \\
 r_5 & m_5 & r_3 \\
 r_3 & m_3 & r_8 \\
 r_8 & m_8 & r_0 \\
\end{array}
\]

\[
\begin{array}{c c c}
 m_4 & 1 & 1 \\
 r_0 & 0 & 0 \\
 r_7 & 0 & 0 \\
 m_5 & 1 & 1 \\
 r_5 & 0 & 0 \\
 m_3 & 0 & 0 \\
 m_8 & 1 & 1 \\
\end{array}
\]

$h_i(a)$ and $h_i(c)$
Cut and Choose Approach

• Issue: Remaining OTs do not form valid Bloom filter
• Constructs desired Bloom filter
• Randomly permute OTs to form Bloom filter
 • π(random OTs) \rightarrow desired BF

$Y = \{a, c\}$

\[
\begin{array}{cc}
\begin{array}{cc}
r_4 & m_4 \\
r_0 & m_0 \\
r_7 & m_7 \\
r_8 & m_8 \\
r_5 & m_5 \\
r_3 & m_3 \\
r_1 & m_1 \\
\end{array} & \begin{array}{cc}
m_4 & 1 \\
m_0 & 0 \\
m_7 & 0 \\
m_8 & 1 \\
m_5 & 1 \\
m_3 & 0 \\
m_1 & 1 \\
\end{array}
\end{array}
\]

$h_i(a)$

$h_i(c)$
Cut and Choose Approach

• Issue: Remaining OTs do not form valid Bloom filter
• Constructs desired Bloom filter
• Randomly permute OTs to form Bloom filter
 • π(random OTs) → desired BF

$\begin{align*}
Y &= \{a, c\} \\
\begin{array}{c|c}
\hline
r_4 & m_4 \\
r_0 & m_0 \\
r_7 & m_7 \\
r_8 & m_8 \\
r_5 & m_5 \\
r_3 & m_3 \\
r_1 & m_1 \\
\hline
\end{array}
\end{align*}$
Cut and Choose Approach

- Issue: Remaining OTs do not form valid Bloom filter
- Constructs desired Bloom filter
- Randomly permute OTs to form Bloom filter
 - π(random OTs) → desired BF

[RindalRosulek17]
Cut and Choose Approach

- Issue: Remaining OTs do not form valid Bloom filter
- Constructs desired Bloom filter
- Randomly permute OTs to form Bloom filter
 - $\pi(\text{random} \ OTs) \rightarrow \text{desired} \ BF$

$Y = \{a, c\}$

$$Y = \{a, c\}$$

$$h_i(a)$$

$$h_i(c)$$

π
Cut and Choose Approach

- Issue: Remaining OTs do not form valid Bloom filter
- Constructs desired Bloom filter
- Randomly permute OTs to form Bloom filter
 - π (random OTs) → desired BF

Output:

$$\hat{X} = \{m_4 \oplus m_1, m_2 \oplus m_3\}$$

$$\hat{X} \cap \{m_4 \oplus m_1, m_8 \oplus m_3\}$$

$Y = \{a, c\}$

\[Y = \{a, c\} \]

[RindalRosulek17]
Cut and Choose Parameters

- Issue: Random OTs/Cut-and-Choose may not result in exactly \(\frac{1}{2} \) zero select bits!
Cut and Choose Parameters

- Issue: Random OTs/Cut-and-Choose may not result in exactly $\frac{1}{2}$ zero select bits!
Cut and Choose Parameters

- Issue: Random OTs/Cut-and-Choose may not result in exactly $\frac{1}{2}$ zero select bits!

[Reference: Rindal Rosulek 17]

\[
\begin{array}{cccc}
\text{Random} & 0 & 1 & 0 \\
1 & m_1 & m_1 & r_0 \\
1 & m_6 & m_6 & r_6 \\
1 & m_7 & m_7 & r_7 \\
1 & m_8 & m_8 & r_8 \\
\end{array}
\]
Cut and Choose Parameters

- Issue: Random OTs/Cut-and-Choose may not result in exactly $\frac{1}{2}$ zero select bits!
- Need robust checking of zero bits
Cut and Choose Parameters

Issue: Random OTs/Cut-and-Choose may not result in exactly $\frac{1}{2}$ zero select bits!

- Need robust checking of zero bits
- Desired properties:
 - $\Pr[\text{good guy accused}] \leq \text{neg}(\kappa)$
- Sufficient to check 1% of the OTs!
Cut and Choose Parameters

Issue: Random OTs/Cut-and-Choose may not result in exactly $\frac{1}{2}$ zero select bits!

- Need robust checking of zero bits
- Desired properties:
 - $\Pr[\text{good guy accused}] \leq \text{neg}(\kappa)$
 -
- Sufficient to check 1% of the OTs!
Cut and Choose Parameters

Issue: Random OTs/Cut-and-Choose may not result in exactly $\frac{1}{2}$ zero select bits!

• Need robust checking of zero bits

• Desired properties:
 • Pr[good guy accused] ≤ neg(κ)

• Sufficient to check 1% of the OTs!

$E[\text{good guy}]$
Cut and Choose Parameters

Issue: Random OTs/Cut-and-Choose may not result in exactly $\frac{1}{2}$ zero select bits!

- Need robust checking of zero bits
- Desired properties:
 - $\Pr[good\ guy\ accused] \leq neg(\kappa)$
- Use Chernoff Bounds
- Sufficient to check 1% of the OTs!
Cut and Choose Parameters

\[\Pr \text{ Bad guy not caught} \leq \text{neg}(\kappa) \]
\[\text{Bad guy not caught} \leq \text{neg}(\kappa) \]

\[\Pr \text{ Bad guy not caught} \leq \text{neg}(\kappa) \]

Issue: Random OTs/Cut-and-Choose may not result in exactly $\frac{1}{2}$ zero select bits!

- Need robust checking of zero bits
- Desired properties:
 - $\Pr[\text{good guy accused}] \leq \text{neg}(\kappa)$
 - $\Pr \text{ Bad guy not caught} \leq \text{neg}(\kappa)$
- Use Chernoff Bounds
- Sufficient to check 1% of the OTs!
Cut and Choose Parameters

\[\text{Pr Bad guy not caught} \leq \text{neg}(\kappa) \]
\[\text{Bad guy not caught} \leq \text{neg}(\kappa) \]

Issue: Random OTs/Cut-and-Choose may not result in exactly \(\frac{1}{2} \) zero select bits!

- Need robust checking of zero bits
- Desired properties:
 - \(\text{Pr[good guy accused]} \leq \text{neg}(\kappa) \)
 - \(\text{Pr Bad guy not caught} \leq \text{neg}(\kappa) \)

- Use Chernoff Bounds
- Sufficient to check 1% of the OTs!
Cut and Choose Parameters

\(r \Pr \text{ Bad guy not caught } \leq \text{neg}(\kappa) \) Bad guy not caught BBa
add gguyuy mnoott ccawuggh tt Bad guy not caught \leq \text{ne}
egg(\kappa) Pr Bad guy not caught \leq \text{neg}(\kappa)

Issue: Random OTs/Cut-and-Choose may not
result in exactly \(\frac{1}{2} \) zero select bits!

- Need robust checking of zero bits
- Desired properties:
 - \(\Pr[\text{good guy accused}] \leq \text{neg}(\kappa) \)
 - \(\Pr \text{ Bad guy not caught } \leq \text{neg}(\kappa) \)
- Use Chernoff Bounds
- Sufficient to check 1% of the OTs!

\[t \ll E[\text{good guy}] \]

Abort threshold

\#zeros seen
Cut and Choose Parameters

Issue: Random OT/Cut-and-Choose may not result in exactly $\frac{1}{2}$ zero select bits!

• Need robust checking of zero bits
• Desired properties:
 • $\text{Pr}[\text{good guy accused}] \leq \text{neg}(\kappa)$
 • $\text{Pr} \text{ Bad guy not caught} \leq \text{neg}(\kappa)$

• Use Chernoff Bounds
• Sufficient to check 1% of the OTs!
Cut and Choose Parameters

\% of the OTs!

\[r \Pr \text{ Bad guy not caught } \leq \text{neg}(\kappa) \]

\[\Pr \text{ Bad guy not caught } \leq \text{neg}(\kappa) \]

\[\Pr [\text{good guy accused}] \leq \text{neg}(\kappa) \]

\[\Pr [\text{Bad guy not caught}] \leq \text{neg}(\kappa) \]

\[\frac{1}{2} \text{ zero select bits!} \]

\[\Pr \text{ Bad guy not caught } \leq \text{neg}(\kappa) \]

Issue: Random OTs/Cut-and-Choose may not result in exactly \(\frac{1}{2} \) zero select bits!

- Need robust checking of zero bits
- Desired properties:
 - \(\Pr [\text{good guy accused}] \leq \text{neg}(\kappa) \)
 - \(\Pr \text{ Bad guy not caught } \leq \text{neg}(\kappa) \)

\[\Pr \text{ Bad guy not caught } \leq \text{neg}(\kappa) \]

- Sufficient to check 1\% of the OTs!
- Sufficient to check 1\% of the OTs!
Cut and Choose Parameters

% of the OTs!
% of the OTs!

\[r \Pr \text{ Bad guy not caught} \leq \text{neg}(\kappa) \]
\[\Pr \text{ Bad guy not caught} \leq \text{neg}(\kappa) \]

Issue: Random OTs/Cut-and-Choose may not result in exactly \(\frac{1}{2} \) zero select bits!

- Need robust checking of zero bits
- Desired properties:
 - \(\Pr[\text{good guy accused}] \leq \text{neg}(\kappa) \)
 - \(\Pr \text{ Bad guy not caught} \leq \text{neg}(\kappa) \)
- Sufficient to check 1% of the OTs!
- Sufficient to check 1% of the OTs!
- Sufficient to check 1% of the OTs!
Extracting Y with Random Oracle

Simulator must extract the effective input Y

- F is not naturally invertible
- BF may be malformed…

- Solution:
 - Model hash function $h_i(\cdot)$ as Random Oracle
 - Non-programmable RO

\[
Y = \{a, c\}
\]

\[
\begin{array}{c|c}
 r_4 & m_4 \\
r_0 & m_0 \\
r_7 & m_7 \\
r_8 & m_8 \\
r_5 & m_5 \\
r_1 & m_1 \\
r_3 & m_3 \\
\end{array}
\]

\[
\begin{array}{c|c}
m_4 & 1 \\
r_0 & 0 \\
r_7 & 0 \\
r_8 & 1 \\
r_5 & 0 \\
m_1 & 1 \\
m_3 & 1 \\
\end{array}
\]

Output:

\[
\hat{X} = \{m_4 \oplus m_1, m_2 \oplus m_3\}
\]

\[
\hat{X} \cap \{m_4 \oplus m_1, m_8 \oplus m_3\}
\]

[RindalRosulek17]
Extracting Y with Random Oracle

Simulator must extract the effective input Y

- F is not naturally invertible
- BF may be malformed…

Solution:
- Model hash function $h_i(\cdot)$ as Random Oracle
- Non-programmable RO

$X \cap Y = \{a\}$

$Y = \{a, c\}$

$OT\quad OT\quad OT\quad h_i(a)$

$OT\quad OT\quad h_i(c)$
Extracting Y with Random Oracle

Simulator must extract the effective input Y

- F is not naturally invertible
- BF may be malformed…

Solution:
- Model hash function $h_i(\cdot)$ as Random Oracle
- Non-programmable RO
Extracting Y with Random Oracle

Simulator must extract the effective input Y

- Can extract OT select bits

- F is not naturally invertible
- BF may be malformed…

Solution:
- Model hash function $h_i(\cdot)$ as Random Oracle
- Non-programmable RO

$Y = \{a, c\}$
Extracting Y with Random Oracle

is not naturally invertible

Simulator must extract the effective input Y

- Can extract OT select bits

- Issues:
 - BF is not naturally invertible
 - BF may be malformed...

- Solution:
 - Model hash function $h_i(\cdot)$ as Random Oracle
 - Non-programmable RO

\[
\begin{align*}
Y &= \{a, c\} \\
BF &= \begin{bmatrix}
1 \\
0 \\
0 \\
1 \\
0 \\
1 \\
1
\end{bmatrix} \\
\text{Simulator}
\end{align*}
\]
Extracting Y with Random Oracle

may be malformed…
is not naturally invertible
Simulator must extract the effective input Y
 • Can extract OT select bits

• Issues:
 • BF may be malformed…
 • BF may be malformed…

• Solution:
 • Model hash function $h_i(\cdot)$ as Random Oracle
 • Non-programmable RO

[1] Rindal Rosulek17
Extracting Y with Random Oracle

$h_i \mathbin{\mathsf{hash}} (\cdot)$ as Random Oracle

may be malformed...

is not naturally invertible

Simulator must extract the effective input Y

• Can extract OT select bits

• Issues:
 • BF may be malformed...

• Solution:
 • Model hash function $h_i (\cdot)$ as Random Oracle

• Solution:
 • Model hash function $h_i (\cdot)$ as Random Oracle
 • Non-programmable RO

\[
\text{Simulator} \quad BF = \begin{bmatrix}
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 \\
\end{bmatrix} \quad \text{OT} \quad Y = \{a, c\}
\]

$[\text{RindalRosulek17}]$
Extracting Y with Random Oracle

$h_i \cdot i \cdot h_i(\cdot)$ as Random Oracle

may be malformed…

is not naturally invertible

Simulator must extract the effective input Y
 • Can extract OT select bits

• Issues:
 • BF may be malformed…

• Solution:
 • Model hash function $h_i(\cdot)$ as Random Oracle

• Solution:
 • Model hash function $h_i(\cdot)$ as Random Oracle
 • Non-programmable RO
Extracting Y with Random Oracle

$h_i ii h_i (\cdot)$ as Random Oracle

may be malformed…

is not naturally invertible

Simulator must extract the effective input Y
 - Can extract OT select bits

• Issues:
 - BF may be malformed…

• Solution:
 - Model hash function $h_i (\cdot)$ as Random Oracle

• Solution:
 - Model hash function $h_i (\cdot)$ as Random Oracle
 - Non-programmable RO

$Y = \{a, c\}$
Extracting Y with Random Oracle

$h_i(i) \cdot$ as Random Oracle
may be malformed...
is not naturally invertible
Simulator must extract the effective input Y
• Can extract OT select bits

• Issues:
 • BF may be malformed...
• Solution:
 • Model hash function $h_i(\cdot)$ as Random Oracle

• Solution:
 • Model hash function $h_i(\cdot)$ as Random Oracle
 • Non-programmable RO
Extracting Y with Random Oracle

$h_i \circ h_i(\cdot)$ as Random Oracle may be malformed…

is not naturally invertible

Simulator must extract the effective input Y

- Can extract OT select bits

- Issues:
 - BF may be malformed…
 - Solution:
 - Model hash function $h_i(\cdot)$ as Random Oracle
 - Solution:
 - Model hash function $h_i(\cdot)$ as Random Oracle
 - Non-programmable RO
Extracting Y with Random Oracle

$h_i \circ h_i (\cdot)$ as Random Oracle

may be malformed...

is not naturally invertible

Simulator must extract the effective input Y
 - Can extract OT select bits

• Issues:
 - BF may be malformed...
• Solution:
 - Model hash function $h_i (\cdot)$ as Random Oracle

• Solution:
 - Model hash function $h_i (\cdot)$ as Random Oracle
 - Non-programmable RO
Extracting Y with Random Oracle

$h_ii h_i(\cdot)$ as Random Oracle

may be malformed…

is not naturally invertible

Simulator must extract the effective input Y

- Can extract OT select bits

Issues:

- BF may be malformed…

Solution:

- Non-programmable ROSolution:
- Model hash function $h_i(\cdot)$ as Random Oracle
- Non-programmable RO
Bloom filter of size $\sim 2nk$ allows a Receiver to insert n items

$$F(a) = m_4 \oplus m_1$$
$$F(c) = m_8 \oplus m_3$$

- $F(\cdot)$
- View Bloom filter protocol as an OPRF

$Y = \{a, c\}$

$$Y = \{a, c\}$$

$$\begin{array}{cc}
r_4 & m_4 \\
r_0 & m_0 \\
r_7 & m_7 \\
r_8 & m_8 \\
r_5 & m_5 \\
r_1 & m_1 \\
r_3 & m_3 \\
\end{array}$$

$$\begin{array}{cccc}
m_4 & 1 \\
r_0 & 0 & r_0 \\
m_7 & 0 & r_7 \\
m_8 & 1 & r_8 \\
m_5 & 0 & r_5 \\
m_1 & 1 & r_1 \\
m_3 & 1 & r_3 \\
\end{array}$$

$$\{m_4 \oplus m_1, m_8 \oplus m_3\}$$
Generalized Encodings

\[F \cdot \]

Bloom filter of size \(\sim 2n\kappa \) allows a Receiver to insert \(n \) items

\[F(a) = m_4 \oplus m_1 \]
\[F(c) = m_8 \oplus m_3 \]

- Sender can generate any encoding \(F(\cdot) \)
- View Bloom filter protocol as an OPRF

\[Y = \{a, c\} \]

\[
\begin{array}{c|c}
 r_4 & m_4 \\
 r_0 & m_0 \\
 r_7 & m_7 \\
 r_8 & m_8 \\
 r_5 & m_5 \\
 r_1 & m_1 \\
 r_3 & m_3 \\
\end{array}
\]

\[
\begin{array}{c|c}
 m_4 & 1 \\
 r_0 & 0 \\
 r_7 & 0 \\
 m_8 & 1 \\
 r_5 & 0 \\
 m_1 & 1 \\
 m_3 & 1 \\
\end{array}
\]

\[\{m_4 \oplus m_1, m_8 \oplus m_3\} \]
Generalized Encodings

\(FFF(\cdot) \)

Bloom filter of size \(\sim 2n\kappa \) allows a Receiver to insert \(n \) items

\[
F(a) = m_4 \oplus m_1 \\
F(c) = m_8 \oplus m_3
\]

- View Bloom filter protocol as an OPRF
- View Bloom filter protocol as an OPRF

\[Y = \{a, c\} \]

\[
\begin{array}{c|c}
 r_4 & m_4 \\
 r_0 & m_0 \\
 r_7 & m_7 \\
 r_8 & m_8 \\
 r_5 & m_5 \\
 r_1 & m_1 \\
 r_3 & m_3 \\
\end{array}
\]

\[
\begin{array}{c|c}
 m_4 & 1 \\
 r_0 & 0 \\
 r_7 & 0 \\
 m_8 & 1 \\
 r_5 & 0 \\
 m_1 & 1 \\
 m_3 & 1 \\
\end{array}
\]

\(h_i(a) \)

\(h_i(c) \)
Generalized Encodings

\[F \neq F(\cdot) \]

Bloom filter of size \(\sim 2n\kappa \) allows a Receiver to insert \(n \) items

\[F(a) = m_4 \oplus m_1 \]
\[F(c) = m_8 \oplus m_3 \]

- View Bloom filter protocol as an OPRF
- View Bloom filter protocol as an OPRF

\[Y = \{a, c\} \]

\[
\begin{array}{c|c}
 r_4 & m_4 \\
r_0 & m_0 \\
r_7 & m_7 \\
r_8 & m_8 \\
r_5 & m_5 \\
r_1 & m_1 \\
r_3 & m_3 \\
\end{array}
\]

\[m_4 \oplus m_1, \quad m_8 \oplus m_3 \]
Comparison – De Cristofaro, Kim, Tsudik10

• DKT10 - Malicious Diffie-Hellman style approach: $x^{\alpha \beta} = y^{\beta \alpha}$
Comparison – De Cristofaro, Kim, Tsudik10

- DKT10 - Malicious Diffie-Hellman style approach: \(x^{\alpha \beta} = y^{\beta \alpha} \)
Comparison – De Cristofaro, Kim, Tsudik10

- DKT10 - Malicious Diffie-Hellman style approach: $x^{\alpha \beta} = y^{\beta \alpha}$
Comparison – De Cristofaro, Kim, Tsudik 10

• DKT10 - Malicious Diffie-Hellman style approach: \(x^\alpha \beta = y^\beta \alpha \)

![Graph showing running time and communication (MB) for different protocols DCW13, DKT10, RR17.](image-url)
Comparison – De Cristofaro, Kim, Tsudik10

- DKT10 - Malicious Diffie-Hellman style approach: \(x^{\alpha \beta} = y^{\beta \alpha} \)
Comparison – De Cristofaro, Kim, Tsudik10

- DKT10 - Malicious Diffie-Hellman style approach: $x^{\alpha \beta} = y^{\beta \alpha}$
The End