# New Collision Attacks on Round-Reduced Keccak

### Kexin Qiao<sup>1,3,4</sup> Ling Song<sup>1,2,3</sup> Meicheng Liu<sup>1</sup> Jian Guo<sup>2</sup>

{qiaokexin, songling, liumeicheng}@iie.ac.cn, guojian@ntu.edu.sg

<sup>1</sup>SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences, China

<sup>2</sup>Nanyang Technological University, Singapore

<sup>3</sup>Data Assurance and Communication Research Center, Chinese Academy of Sciences, China

<sup>4</sup>University of Chinese Academy of Sciences, China

Paris, France Eurocrypt 2017

# **Outlines**



### Introduction

- Overview of Collision Attack
- 3 Search for Differential Trails





### Outline



Introduction

- Description of Keccak
- Previous Work and Our Contribution
- Main Idea
- 2 Overview of Collision Attack
- 3 Search for Differential Trails
- 4 Results



• Structure of Keccak–Sponge construction



http://keccak.noekeon.org/

- Keccak-f permutation
  - 1600 bits: a 5 × 5 array of 64-bit lanes
  - 24 round R
  - each round consists of five steps:

$$\mathsf{R} = \iota \circ \chi \circ \pi \circ \rho \circ \theta$$

KECCAK-f permutation: the internal state



http://www.iacr.org/authors/tikz/

**Keccak** permutation:  $\iota \circ \chi \circ \pi \circ \rho \circ \theta$ 

#### $\theta$ step: adding two columns to current bit



http://keccak.noekeon.org/

Description of Keccak

# SHA-3 Hash Function

**Keccak** permutation:  $\iota \circ \chi \circ \pi \circ \rho \circ \theta$ 

#### $\rho$ step: lane level rotations



http://keccak.noekeon.org/

**Keccak** permutation:  $\iota \circ \chi \circ \pi \circ \rho \circ \theta$ 

#### $\pi$ step: permutation on lanes



http://keccak.noekeon.org/

**Keccak** permutation:  $\iota \circ \chi \circ \pi \circ \rho \circ \theta$ 

 $\chi$  step: the only nonlinear operation



http://keccak.noekeon.org/

**KECCAK** permutation:  $\iota \circ \chi \circ \pi \circ \rho \circ \theta$ 

step: adding constant

Adding one round-dependent constant to the first "lane", to destroy the symmetry, usually irrelevant with cryptanalysis details.

Кессак permutation

#### Internal state A: a $5 \times 5$ array of 64-bit lanes

$$\begin{array}{l} \theta \ \text{step} \ C[x] = A[x,0] \oplus A[x,1] \oplus A[x,2] \oplus A[x,3] \oplus A[x,4] \\ D[x] = C[x-1] \oplus (C[x+1] \lll 1) \\ A[x,y] = A[x,y] \oplus D[x] \\ \rho \ \text{step} \ A[x,y] = a[x,y] \lll r[x,y] \\ - \text{ The constants } r[x,y] \ \text{are the rotation offsets.} \\ \pi \ \text{step} \ B[y,2*x+3*y] = A[x,y] \\ \chi \ \text{step} \ A[x,y] = B[x,y] \oplus ((B[x+1,y]) \& B[x+2,y]) \\ \iota \ \text{step} \ A[0,0] = A[0,0] \oplus RC \\ - RC[i] \ \text{are the round constants.} \end{array}$$

The only non-linear operation is  $\chi$  step.

# Previous Work and Our Contribution

Collision attacks on round-reduced Keccak

#### **Practical Results:**

- 3-round Keccak-384
- 3-round Keccak-512
- 4-round Keccak-224
- 4-round Keccak-256

(Dinur et al., FSE2013)

(Dinur et al., FSE2013)

(Dinur et al., FSE2012)

(Dinur et al., FSE2012)

#### Theoretical results:

- 4-round Кессак-384: 2<sup>147</sup>
- 5-round Кессак-256: 2<sup>115</sup>

(Dinur et al., FSE2013) (Dinur et al., FSE2013)

# Previous Work and Our Contribution

Collision attacks on round-reduced Keccak

#### Practical Results:

| <ul> <li>З-round Кессак-384</li> </ul>                                         | (Dinur et al., FSE2013)              |  |  |  |  |
|--------------------------------------------------------------------------------|--------------------------------------|--|--|--|--|
| <ul> <li>З-round Кессак-512</li> </ul>                                         | (Dinur et al., FSE2013)              |  |  |  |  |
| <ul> <li>4-round Кессак-224</li> </ul>                                         | (Dinur et al., FSE2012)              |  |  |  |  |
| <ul> <li>4-round Кессак-256</li> </ul>                                         | (Dinur et al., FSE2012)              |  |  |  |  |
| 5-round SHAKE128 – a member in SHA-3                                           | (This)                               |  |  |  |  |
| • 5-round Keccak[ <i>r</i> = 1440, <i>c</i> = 160, <i>d</i> = 160]             | (This)                               |  |  |  |  |
| • 5-round Keccak[ <i>r</i> = 640, <i>c</i> = 160, <i>d</i> = 160]              |                                      |  |  |  |  |
| Theoretical results:                                                           |                                      |  |  |  |  |
| <ul> <li>4-round Кессак-384: 2<sup>147</sup></li> </ul>                        | (Dinur et al., FSE2013)              |  |  |  |  |
| <ul> <li>5-round Кессак-256: 2<sup>115</sup></li> </ul>                        | (Dinur et al., FSE2013)              |  |  |  |  |
| <ul> <li>5-round Кессак-224: 2<sup>101</sup></li> </ul>                        | (This)                               |  |  |  |  |
| • 6-round Keccak[ <i>r</i> = 1440, <i>c</i> = 160, <i>d</i> = 160]:            | 2 <sup>70.24</sup> (This)            |  |  |  |  |
| K. Qiao, L. Song, M. Liu, J. Guo New Collision Attacks on Round-Reduced Keccak | Paris, France Eurocrypt 2017 11 / 27 |  |  |  |  |

# Main Idea

An extended algebraic and differential hybrid method:

- S-box linearization in affine subspaces
- A dedicated strategy for searching differential trails

# Outline

#### Introduction



- Overview of Collision Attack
- Overview of 5-round collision attack
- S-box linearization and affine subspaces
- A connector covering two rounds







# Overview of 5-round collision attack



3-round differential:  $\Delta S_I \rightarrow \Delta S_O$ 

2-round connector: linking ∆S₁ with the initial value by linear systems
Find (M, M')s s.t.

$$\mathbb{R}^2(\overline{M}||0^c) + \mathbb{R}^2(\overline{M'}||0^c) = \Delta S_l, \quad (\mathbb{R}^i: \mathsf{i} ext{ iterations of } \mathbb{R})$$

•  $E_{\Delta}$  – solution is the difference of two messages

•  $E_M$  – solution space is the message/searching space

### Property of Keccak S-box

- Given (δ<sub>in</sub>, δ<sub>out</sub>), V = {x : S(x) + S(x + δ<sub>in</sub>) = δ<sub>out</sub>} an affine subspace.
- ② Given  $\delta_{out}$ , { $\delta_{in}$  : DDT( $\delta_{in}$ ,  $\delta_{out}$ ) > 0} contains at least five 2-dimensional affine subspaces.

### 1-round connector

$$\begin{array}{cccc} \alpha_0 & \beta_0 & \alpha_1(\Delta S_I) \\ \\ L & \chi \\ \end{array}$$

Dinur et al.'s target difference algorithm: find (M, M')s s.t.

$$\mathbf{R}^{1}(\overline{M}||\mathbf{0}^{c}) + \mathbf{R}^{1}(\overline{M'}||\mathbf{0}^{c}) = \Delta S_{I}$$

- **Difference phase**: find exact input difference  $\beta_0$  to the  $\chi$  layer
  - For each active S-box, choose an affine subspace with 4 potential input differences
  - A more flexible approach
- Value phase: obtain the actual message pairs that lead to the target difference  $\Delta S_l$ 
  - Given  $\beta_0$ , the value phase reduces to solving linear equations.

### Extension the 1-round connector to 2-round



# S-box linearization

#### Definition (Linearizable affine subspace, LAS)

Linearizable affine subspaces are affine input subspaces on which S-box substitution is equivalent to a linear transformation. If *V* is a linearizable affine subspace of an S-box operation  $S(\cdot)$ ,  $\forall x \in V$ ,  $S(x) = A \cdot x + b$ , where *A* is a matrix and *b* is a constant vector.

#### Example (Linearizable affine subspace)

 $V = \{00000, 00001, 00100, 00101\}, S(V) = \{00000, 01001, 00101, 01100\}, S$ -box is equivalent to linear transformation

$$y = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \cdot x.$$

### Linearizable Affine Subspace and DDT

Observation (Linear Affine Subspaces in DDT)

Consider the DDT of Keccak S-box,  $V = \{x : S(x) + S(x + \delta_{in}) = \delta_{out}\}$ 

If DDT $(\delta_{in}, \delta_{out}) = 2$  or 4, then V is a linearizable affine subspace.

if DDT(δ<sub>in</sub>, δ<sub>out</sub>) = 8, then there are six 2-dimensional subsets
 W<sub>i</sub> ⊂ V, i = 0, 1, · · · , 5 such that W<sub>i</sub>(i = 0, 1, · · · , 5) are linearizable affine subspaces.

```
Example (Linear Affine Subspaces in DDT)

DDT(01,01) = 8, V = \{10, 11, 14, 15, 18, 19, 1C, 1D\}, w_i's are

\{10, 11, 14, 15\}, \{10, 11, 18, 19\}, \{10, 11, 1C, 1D\}, \{14, 15, 18, 19\}, \{14, 15, 1C, 1D\}, \{18, 19, 1C, 1D\}.
```

### Build a 2-round connector



 $E_{\Delta}$  and  $E_M$  are built on x variables before  $\chi$  layer in the first round.

• Initialize  $E_{\Delta}$  and  $E_M$  concerning the initial state.

• 
$$\alpha_2(\Delta S_l) \xrightarrow{\$} \beta_1 \xrightarrow{L^{-1}} \alpha_1 \xrightarrow{\text{target difference algorithm}} \beta_0$$
  
by Dinur et al.

# Build a 2-round connector



Constrain x to linearizable affine subspaces by linear equations⇒

- $\Pr(\beta_0 \rightarrow \alpha_1)=1$
- y is linear to x
- Constrain z to subspaces by linear equations  $\Rightarrow \Pr(\beta_1 \rightarrow \alpha_2)=1$
- Convert constrains on z to those on x
  - All are linear equation system constraints!

# Outline

### Introduction



Search for Differential Trails

- Requirements for differential trails
- Searching strategies and results

Results

3

#### Future work

# Premaries



• 
$$\alpha_0 \xrightarrow{L} \beta_0 \xrightarrow{\chi} \alpha_1 \xrightarrow{L} \cdots \alpha_{n-1} \xrightarrow{L} \beta_{n-1} \xrightarrow{\chi} \alpha_n.$$
  
•  $w_i = w(\beta_i \to \alpha_{i+1}) = b - \log_2 |\{x : f(x) \oplus f(x \oplus \beta_i) = \alpha_{i+1}\}|.$   
• *n*-round **trail core**  $(\beta_1, \cdots, \beta_{n-1})$ : a set of *n*-round trails  
 $\alpha_0 \xrightarrow{L} \beta_0 \xrightarrow{\chi}_{\text{minimum weight}} \alpha_1 \xrightarrow{L} \beta_1 \cdots \xrightarrow{L} \beta_{n-1} \xrightarrow{\chi}_{\text{compatible}} \alpha_n$ 

# Requirements for differential trails



(1) α<sup>d</sup><sub>n<sub>r</sub></sub> = 0, i.e. the difference of output must be zero.
(2) DF > w<sub>2</sub> + ··· + w<sup>d</sup><sub>n<sub>r</sub>-1</sub>, i.e. the degree of freedom must be sufficient;
Estimation of the degree of freedom of the 2-round connector:

$$\mathrm{DF}=\frac{b}{5}\times 2-(c+p)-w_1.$$

(3)  $w_2 + \cdots + w_{n_r-1}^d \le 48$ , the complexity for finding a collision should be low.

### Search strategies



- 1. Search for lightweight  $\beta_3 s$  s.t.  $\alpha_3$  and  $\alpha_4$  are in CP-kernel
- 2. Forward: Test whether there exists  $\alpha_5^d = 0$  (requirement (1))
- 3. *Backward*: For lightweight  $\alpha_3$ , traverse all compatible  $\beta_2$ . In the trail core ( $\beta_2$ ,  $\beta_3$ ,  $\beta_4$ ) with lightweight  $\alpha_2$ , check requirment (2) and (3).

### Searching results

#### Table: Differential trail cores for $K_{ECCAK}[r, c, n_r, d]$ .

| No. | <i>r</i> + <i>c</i> | $\#AS(\alpha_2 - \beta_2 - \beta_3 - \beta_4^d)$  | $w_1 - w_2 - w_3 - w_4^d$       | d   |
|-----|---------------------|---------------------------------------------------|---------------------------------|-----|
| 1   | 1600                | 102-8-8-2                                         | 240-19-16-4                     | 256 |
| 2   | 1600                | 88-8-7-0                                          | 195-21-15-0                     | 256 |
| 3   | 1600                | 85-9-10-2                                         | 190-25-20-3                     | 224 |
| 4   | 800                 | 38-8-8-0                                          | 85-20-16-0                      | 160 |
| No. | <i>r</i> + <i>c</i> | $#AS(\alpha_2-\beta_2-\beta_3-\beta_4-\beta_5^d)$ | $W_1 - W_2 - W_3 - W_4 - W_5^d$ | d   |
| 5   | 1600                | 145-6-6-10-14                                     | 340-15-12-22-23                 | 160 |

### Outline

### Introduction

- Overview of Collision Attack
- 3 Search for Differential Trails





# Summary of Attacks on Keccak

#### Table: Collision attack results

| Target [r. e. d]     | n <sub>r</sub> | Searching          | Degree of | Searching         | Solving           |
|----------------------|----------------|--------------------|-----------|-------------------|-------------------|
| [arget[r, c, d]]     |                | Complexity         | freedom   | Time              | Time <sup>2</sup> |
| SHAKE128             | 5              | 2 <sup>39</sup>    | 94        | 30 min            | 25 min            |
| Knockw[1440,160,160] | 5              | 2 <sup>40</sup>    | 162       | 2.48 hr           | 9.6 sec           |
| KECCAK[1440,100,100] | 6              | 2 <sup>70.24</sup> | 135       | N.A. <sup>1</sup> | 1 hr              |
| Кессак[640,160,160]  | 5              | 2 <sup>35</sup>    | 56        | 2.67 hr           | 30 min            |
| Кессак-224           | 5              | 2 <sup>101</sup>   | 11/2/3    | N.A.              | N.A.              |

<sup>1</sup> N.A.: Not Available.

 $^{\rm 2}$  There is no theoretical estimate for the solving time of the heuristic algorithms used here.

### Outline

### Introduction

- Overview of Collision Attack
- 3 Search for Differential Trails

#### 4 Results



### Future work

#### 3-round connectors

 Practical 6-round collisions on a challenge version have already been found

### Future work

#### 3-round connectors

 Practical 6-round collisions on a challenge version have already been found

# The S-box linearization can be viewed as a "row-level" linear approximation.

– Linear cryptanalysis: bit-level linear approximation Does linearization on alternative levels exist and how to find them?

### Future work

#### 3-round connectors

 Practical 6-round collisions on a challenge version have already been found

The S-box linearization can be viewed as a "row-level" linear approximation.

– Linear cryptanalysis: bit-level linear approximation Does linearization on alternative levels exist and how to find them?

Will system of higher degree work? Systems of degree 2 can also be applied to build connectors.

# Thanks for your attention.