Constraint hiding constrained PRF for NC1 from LWE
Ran Canetti, Yilei Chen, \# Eurocrypt 2017 special edition

Puncture!

Puncturable/constrained PRF

[Boneh, Waters 13, Kiayias, Papadopoulos, Triandopoulos, Zacharias 13, Boyle, Goldwasser, Ivan 14, Sahai, Waters 14]

original key

?, if $x=x^{*}$ $F_{K}(x)$, else

punctured key

Puncturable/constrained PRF

?, if $x=x^{*}$ $F_{K}(x)$, else

punctured key

Puncture $\left(K, x^{*}\right)=>K\left\{x^{*}\right\}$ s.t. $F_{k}\left(x^{*}\right)$ is pseudorandom, give the $K\left\{x^{*}\right\}$ that preserve the original outputs elsewhere.

Puncturable/constrained PRF

?, if $x=x^{*}$ $F_{K}(x)$, else

punctured key

Puncture $\left(K, x^{*}\right)=>K\left\{x^{*}\right\}$ s.t. $F_{k}\left(x^{*}\right)$ is pseudorandom, give the $K\left\{x^{*}\right\}$ that preserve the original outputs elsewhere.

In general: Constrain(K, C) => $\mathrm{K}\{\mathrm{C}\}$

Puncturable/constrained PRF

?, if $x=x^{*}$ $F_{K\left\{x^{\wedge}\right\}}(x)=\left\{\begin{array}{l}F_{K}(x) \text {, else }\end{array}\right.$

punctured key

Puncture $\left(K, x^{*}\right)=>K\left\{x^{*}\right\}$ s.t. $F_{k}\left(x^{*}\right)$ is pseudorandom, give the $K\left\{x^{*}\right\}$ that preserve the original outputs elsewhere.

In general: Constrain $(\mathrm{K}, \mathrm{C})=>\mathrm{K}\{\mathrm{C}\}$

They have many applications (broadcast encryption, identity-based KE), best known for being good friends of iO

Puncturable PRF from GGM

[Goldreich, Goldwasser, Micali 84]

Puncturable PRF from GGM

[Goldreich, Goldwasser, Micali 84]
original
fresh random

Puncturable PRF from GGM

[Goldreich, Goldwasser, Micali 84]
original
fresh random

The constrained key reveals the point x^{*}

Constrained PRF

Constraint-hiding Constrained PRF

Constraint-hiding Constrained PRF

Constraint-hiding Constrained PRF

? = secret?

Constraint-hiding Constrained PRF

? = secret?

? = key?

Constraint-hiding Constrained PRF

? = secret?
 ? = key?
 $?=$?

\#fakeTennisCourtOath

Boneh, Lewi, Wu (PKC 17, eprint 2015/1167)

What are Constraint-Hiding CPRFs:

- An indistinguishability-based definition

Boneh, Lewi, Wu (PKC 17, eprint 2015/1167)

What are Constraint-Hiding CPRFs:

- An indistinguishability-based definition

Where to find them (secure for many keys):

- iO(PPRF) is CHCPRF
- Bit-fixing from multilinear DDH, puncturing from multilinear subgroup-hiding

Boneh, Lewi, Wu (PKC 17, eprint 2015/1167)

What are Constraint-Hiding CPRFs:

- An indistinguishability-based definition

Where to find them (secure for many keys):

- iO(PPRF) is CHCPRF
- Bit-fixing from multilinear DDH, puncturing from multilinear subgroup-hiding

How to use them:

- Private-key deniable encryption,
- Privately-detectable watermarking,
- Searchable encryption

This work:
Canetti, Chen (Eurocrypt 17)

What are Constraint-Hiding CPRFs:

- A simulation-based definition of CHCPRF

This work:
Canetti, Chen (Eurocrypt 17)

What are Constraint-Hiding CPRFs:

- A simulation-based definition of CHCPRF

Where to find them:

- Simulation-based 1-key CHCPRFs for NC1 from Learning With Errors

This work:
Canetti, Chen (Eurocrypt 17)

What are Constraint-Hiding CPRFs:

- A simulation-based definition of CHCPRF

Where to find them:

- Simulation-based 1-key CHCPRFs for NC1 from Learning With Errors

How to use them:

- 1-key CHCPRF implies 1-key private-key functional encryption (reusable garbled circuits)
- 2-key CHCPRF implies obfuscation*

Concurrent work: Boneh, Kim, Montgomery (Eurocrypt 17)

1-key puncturable CHCPRFs from LWE.

Both root from previous lattices-based PRFs, but different method to constrain and hide.

Plan for the talk:

Part 1: Definition, implications to obfuscation, functional encryption
Part 2: How to construct CHCPRFs for NC1

Defining constraint-hiding constraint PRF (CHCPRF)

Master_KeyGen -> MSK
Cons(MSK, C) -> K[C]
$\operatorname{Eval}(K, x)->F_{K}(x)$

definition of CHCPRF

Simulation-based CHCPRF [CC 17]

for all p.p.t. adv, there's a simulator, s.t. the outputs of the real and simulated distributions are indistinguishable.

Real

Simulator

Master_KeyGen -> MSK

Cons(MSK, C) -> K[C]
$\operatorname{Eval}(K, x)->F_{K}(x)$

Constraint query C

Real

Simulation-based definition of CHCPRF

Master_KeyGen -> MSK

Cons(MSK, C) -> K[C]
$\operatorname{Eval}(K, x)->F_{K}(x)$

Cons(MSK, C) $\rightarrow \mathrm{K}[\mathrm{C}] \quad$ Constraint query C

Real

Simulation-based definition of CHCPRF

Master_KeyGen -> MSK

Cons(MSK, C) -> K[C]
$\operatorname{Eval}(K, x)->F_{K}(x)$

Cons(MSK, C) -> K[C] Constraint query C
Input query x

Real

Simulation-based definition of CHCPRF

Master_KeyGen -> MSK
Cons(MSK, C) -> K[C]
$\operatorname{Eval}(K, x)->F_{K}(x)$

Cons(MSK, C) -> K[C] Constraint query C
$\operatorname{Eval}(\mathrm{MSK}, \mathrm{x})->\mathrm{F}_{\mathrm{K}}(\mathrm{x})$
Input query x

Real

Simulation-based definition of CHCPRF

Master_KeyGen -> MSK

Cons(MSK, C) -> K[C]
$\operatorname{Eval}(K, x)->F_{K}(x)$

Constraint query C

Simulator

Simulation-based definition of CHCPRF

Master_KeyGen -> MSK
Cons(MSK, C) -> K[C]
$\operatorname{Eval}(K, x)->F_{K}(x)$

Constraint query C

$$
K^{\mathrm{S}}<-\operatorname{Sim}\left(\mathrm{MSK}^{\mathrm{S}}, 1^{\mid \mathrm{Cl}}\right)
$$

Simulator

Simulation-based definition of CHCPRF

Master_KeyGen -> MSK
Cons(MSK, C) -> K[C]
$\operatorname{Eval}(K, x)->F_{K}(x)$

Constraint query C

$$
K^{s}<-\operatorname{Sim}\left(\mathrm{MSK}^{\mathrm{s}}, 1^{\mid \mathrm{Cl}}\right)
$$

Input query x

Simulator

Simulation-based definition of CHCPRF

Master_KeyGen -> MSK
Cons(MSK, C) -> K[C]
$\operatorname{Eval}(K, x)->F_{K}(x)$

Constraint query C
$\mathrm{K}^{\mathrm{S}}<-\operatorname{Sim}\left(\mathrm{MSK}^{\mathrm{s}}, 1^{\mid \mathrm{Cl}}\right)$
Input query x

$$
y^{s}<-\operatorname{Sim}\left(M S K^{s}, x, C(x)\right)
$$

Simulator

Simulation-based definition of CHCPRF

Correctness: for x s.t. $C(x)=1, \operatorname{Pr}\left[F_{K}(x)=F_{K[C]}(x)\right]>$ 1-negl.

Cons(MSK, C) -> K[C]
Constraint query C

Input query x
$K^{S}<-\operatorname{Sim}\left(\mathrm{MSK}^{\mathrm{S}}, 1^{|\mathrm{Cl}|}\right)$
$\operatorname{Eval}(\mathrm{MSK}, \mathrm{x})->\mathrm{F}_{\mathrm{K}}(\mathrm{x})$
$y^{S}<-\operatorname{Sim}\left(\right.$ MSK $\left.^{S}, x, C(x)\right)$

Real

Simulator

Simulation-based definition of CHCPRF

Correctness: for x s.t. $C(x)=1, \operatorname{Pr}\left[F_{K}(x)=F_{K[C]}(x)\right]>$ 1-negl.
Pseudorandom \& Constraint-hiding:

$$
K[C], F_{K}(x) \approx_{C} K^{S}, y^{S} \quad\left(\text { when } C(x)=0, y^{s} \text { is from random }\right)
$$

Cons(MSK, C) -> K[C]
Constraint query C
Input query x

$$
y^{s}<-\operatorname{Sim}\left(M S K^{s}, x, C(x)\right)
$$

$K^{s}<-\operatorname{Sim}\left(\right.$ MSK $\left.^{s}, 1^{|C|}\right)$

Real

Simulator

Simulation-based definition of CHCPRF

Theorem [CC17]
For 1-constrained key in the selective setting sim-based = ind-based

Sim-based definition for many constrained keys

Real

Simulator

Correctness: for x s.t. $C(x)=1, \operatorname{Pr}\left[F_{K}(x)=F_{K[C]}(x)\right]>$ 1-negl.
Constraint-hiding:

$$
\mathrm{K}\left[\mathrm{C}_{1}\right], \mathrm{K}\left[\mathrm{C}_{2}\right] \approx_{\mathrm{c}} \mathrm{~K}_{1}^{\mathrm{S}}, \mathrm{~K}_{2}^{\mathrm{S}}
$$

MSK

Master KeyGen
MSK ${ }^{S}$
Cons(MSK, $\left.\mathrm{C}_{1}\right)->\mathrm{K}^{\left.\left[\mathrm{C}_{1}\right] \quad \text { Constraint query } \mathrm{C}_{1} \quad \mathrm{~K}_{1}^{\mathrm{S}}<-\operatorname{Sim}\left(\mathrm{MSK}^{\mathrm{S}}, 1^{|\mathrm{Cl}|}\right), ~\right) ~}$
Cons(MSK, $\left.\mathrm{C}_{2}\right)->\mathrm{K}\left[\mathrm{C}_{2}\right] \quad$ Constraint query $\mathrm{C}_{2} \quad \mathrm{~K}_{2}^{\mathrm{S}}<-\operatorname{Sim}\left(\mathrm{MSK}^{\mathrm{S}}, 1^{|\mathrm{Cl}|}\right)$

Real

Sim-based definition for 2 keys

Simulator

Correctness: for x s.t. $C(x)=1, \operatorname{Pr}\left[F_{K}(x)=F_{K[C]}(x)\right]>$ 1-negl.
Constraint-hiding:

$$
\mathrm{K}\left[\mathrm{C}_{1}\right], \mathrm{K}\left[\mathrm{C}_{2}\right] \approx_{\mathrm{c}} \mathrm{~K}_{1}^{\mathrm{S}}, \mathrm{~K}_{2}^{\mathrm{S}}
$$

MSK
 Master KeyGen
 MSK ${ }^{\text {S }}$

Cons(MSK, $\left.\mathrm{C}_{1}\right)$-> K[C. $] \quad$ Constraint query $\mathrm{C}_{1} \quad \mathrm{~K}_{1}^{\mathrm{S}}<-\operatorname{Sim}\left(\mathrm{MSK}^{\mathrm{S}}, 1^{\mid \mathrm{Cl}}\right)$ Cons(MSK, $\left.\mathrm{C}_{2}\right)->\mathrm{K}\left[\mathrm{C}_{2}\right] \quad$ Constraint query $\mathrm{C}_{2} \quad \mathrm{~K}_{2}^{\mathrm{S}}<-\operatorname{Sim}\left(\mathrm{MSK}^{\mathrm{S}}, 1^{|\mathrm{Cl}|}\right)$

Real

Simulator

Reminiscent of obfuscation ...

Theorem [CC 17]: Two-key CHCPRF (for function class C) implies obfuscation (for C)

- Two-key relaxed sim-CHCPRF implies strong VBB obfuscation
- Two-key ind-CHCPRF implies iO

Obfuscation

Theorem [CC 17]: Two-key CHCPRF (for function class C) implies obfuscation (for C)

- Two-key relaxed sim-CHCPRF implies strong VBB obfuscation
- Two-key ind-CHCPRF implies iO

Construction:

Obf $=(\mathrm{K}[\mathrm{C}], \mathrm{K}[\mathrm{Z}])$
$\operatorname{Eval}(x)=\operatorname{Eval}(K[C], x)-\operatorname{Eval}(K[Z], x)$

Obfuscation

Idea implicit from the [GGHRSW13] candidate obfuscation

In the rest of the talk, we will focus on: 1-key simulation-based definition for CHCPRF.

CHCPRF => Functional encryption

Theorem [CC 17] 1-key sim-based CHCPRF implies 1-key private-key functional encryption (reusable garbled circuits).

Theorem [CC 17] 1-key sim-based CHCPRF implies 1-key private-key functional encryption (reusable garbled circuits).

Construction: from normal encryption Sym and CHCPRF F
$\operatorname{Enc}(\mathrm{m} ; \mathrm{r}): \quad \mathrm{ct}=\mathrm{Enc}_{\text {Sym. }}(\mathrm{m} ; \mathrm{r}) ; \quad \operatorname{tag}=\mathrm{F}[\mathrm{K}](\mathrm{ct})$
FSK[Sym.K, F.K, C]: constrained key for the "decryption and eval" functionality $\mathrm{C}\left(\mathrm{Dec}_{\text {sym.K }}().\right)$
Eval: compute $\mathrm{F}\left[\mathrm{C}\left(\operatorname{Dec}_{\text {Sym. } . \mathrm{L}}().\right)\right](\mathrm{ct})$, and compare with tag

Functional Encryption

Main construction:

1-key sim-based CHCPRFs for NC1 from Learning With Errors.

Main construction:

1-key sim-based CHCPRFs for NC1 from Learning With Errors.

Combine:

- Lattices-based PRFs
- Barrington's theorem to embed functionality
- GGH15 encoding to provide a public constrained mode

Demonstrate a proof methodology of GGH15-based applications.

Banerjee, Peikert, Rosen '12

Subset-product \& rounding

Eval: $\quad F(x)=\left\{\prod \mathrm{s}_{\mathrm{i}, \mathrm{xi}} \mathrm{A}\right\}_{2}$
$\mathrm{S}_{\mathrm{i}, \mathrm{b}}$ are LWE secrets from low-norm distributions

Banerjee, Peikert, Rosen '12 Subset-product \& rounding

Eval: $\quad \mathrm{F}(\mathrm{x})=\left\{\prod_{\mathrm{i}, \mathrm{xi}} \mathrm{A}\right\}_{2}$

What we need in addition to build a CHCPRF:

+ A proper public mode of the function (GGH15 encoding)
+ Embed structures in the secret terms to perform functionality
(Barrington's theorem)

Tool 1: GGH15 encoding
 [Gentry, Gorbunov, Halevi 15]

Trapdoor

Trapdoor [Ajtai 99, Alwen, Peikert 09, Micciancio, Peikert 12] Can sample A with a trapdoor T.

Can sample small preimage from Gaussian [Klein '00, GPV'08]

GGH15 encoding for the $i^{\text {th }}$ hop:

GGH15 encoding for the $i^{\text {th }}$ hop:

$$
Y_{i, 1}=s_{i, 1} A_{i+1}+E_{i, 1}
$$

$$
Y_{i, 0}=s_{i, 0} A_{i+1}+E_{i, 0}
$$

Encode $\left(s_{i, b}\right): 2$ steps

1. $Y_{i, b}=s_{i, b} A_{i+1}+E_{i, b}$

GGH15 encoding for the $i^{\text {th }}$ hop:

Encode $\left(s_{i, b}\right): 2$ steps

1. $Y_{i, b}=s_{i, b} A_{i+1}+E_{i, b}$
2. Sample (by the trapdoor of A_{i}) small $D_{i, b}$ s.t. $A_{i} D_{i, b}=Y_{i, b}$

GGH15 for L hops:

GGH15 for L hops:

$\operatorname{Encode}\left(s_{\mathrm{i}, \mathrm{b}}\right): 2$ steps

GGH15 for L hops:

GGH15 for L hops:
Encode($\left.s_{i, b}\right): 2$ steps

$$
Y_{L, 0}=s_{L, 0} A_{L+1}+E_{L, 0}
$$

1. $Y_{i, b}=s_{i, b} A_{i+1}+E_{i, b}$
2. Sample (by the trapdoor of A_{i}) small $D_{i, b}$ s.t. $A_{i} D_{i, b}=Y_{i, b}$ Let $D_{i, b}$ be Encoding $\left(s_{i, b}\right)$

GGH15 for L hops:

Review: What are public

Understanding the functionality of GGH15

Evaluation of GGH15 (prove by example):

Eval(0110)
$=A_{1} D_{1,0} D_{2,1} D_{3,1} D_{4,0}$

Evaluation of GGH15 (prove by example):

Eval(0110)
$=A_{1} D_{1,0} D_{2,1} D_{3,1} D_{4,0}$
$=\left(s_{1,0} A_{2}+E_{1,0}\right) D_{2,1} D_{3,1} D_{4,0}$

Evaluation of GGH15 (prove by example):

Eval(0110)

$$
\begin{aligned}
& =A_{1} D_{1,0} D_{2,1} D_{3,1} D_{4,0} \\
& =\left(s_{1,0} A_{2}+E_{1,0}\right) D_{2,1} D_{3,1} D_{4,0} \\
& =s_{1,0} A_{2} D_{2,1} D_{3,1} D_{4,0}+\text { "small" }
\end{aligned}
$$

Evaluation of GGH15 (prove by example):

Eval(0110)

+ "small"
$=A_{1} D_{1,0} D_{2,1} D_{3,1} D_{4,0}$
$=\left(s_{1,0} A_{2}+E_{1,0}\right) D_{2,1} D_{3,1} D_{4,0}$
$=s_{1,0} A_{2} D_{2,1} D_{3,1} D_{4,0}+$ "small"
$=s_{1,0}\left(s_{2,1} A_{3}+E_{2,1}\right) D_{3,1} D_{4,0}+$ "small"

Evaluation of GGH15 (prove by example):

Eval(0110)
$=A_{1} D_{1,0} D_{2,1} D_{3,1} D_{4,0}$
$=\left(s_{1,0} A_{2}+E_{1,0}\right) D_{2,1} D_{3,1} D_{4,0}$
$=s_{1,0} A_{2} D_{2,1} D_{3,1} D_{4,0}+$ "small"
$=s_{1,0}\left(s_{2,1} A_{3}+E_{2,1}\right) D_{3,1} D_{4,0}+$ "small"
$=s_{1,0} s_{2,1} A_{3} D_{3,1} D_{4,0}+$ "still small"

Evaluation of GGH15 (prove by example):

Eval(0110)
$=A_{1} D_{1,0} D_{2,1} D_{3,1} D_{4,0}$
$=\left(s_{1,0} A_{2}+E_{1,0}\right) D_{2,1} D_{3,1} D_{4,0}$
$=s_{1,0} A_{2} D_{2,1} D_{3,1} D_{4,0}+$ "small"
$=s_{1,0}\left(s_{2,1} A_{3}+E_{2,1}\right) D_{3,1} D_{4,0}+$ "small"
$=s_{1,0} S_{2,1} A_{3} D_{3,1} D_{4,0}+$ "still small"
$=s_{1,0} S_{2,1} S_{3,1} A_{4} D_{4,0}+$ "still smallish"

Evaluation of GGH15 (prove by example):

$\mathrm{S}_{1,1}$	$\mathrm{~S}_{2,1}$	$\mathrm{~S}_{3,1}$	$\mathrm{~S}_{4,1}$
$\mathrm{~S}_{1,0}$	$\mathrm{~S}_{2,0}$	$\mathrm{~S}_{3,0}$	$\mathrm{~S}_{4,0}$

Eval(0110)
$=A_{1} D_{1,0} D_{2,1} D_{3,1} D_{4,0}$
$=\left(s_{1,0} A_{2}+E_{1,0}\right) D_{2,1} D_{3,1} D_{4,0}$
$=s_{1,0} A_{2} D_{2,1} D_{3,1} D_{4,0}+$ "small"
$=s_{1,0}\left(s_{2,1} A_{3}+E_{2,1}\right) D_{3,1} D_{4,0}+$ "small"
$=s_{1,0} S_{2,1} A_{3} D_{3,1} D_{4,0}+$ "still small"
$=s_{1,0} S_{2,1} S_{3,1} A_{4} D_{4,0}+$ "still smallish"
$=s_{1,0} \mathrm{~s}_{2,1} \mathrm{~s}_{3,1} \mathrm{~s}_{4,0} \mathrm{~A}_{5}+{ }^{\text {"small" }}$

Evaluation of GGH15 (prove by example):

Tool 2: Barrington's theorem
(used to embed a circuit into the key)

Barrington 1986: log-depth boolean circuits can be recognized by subset products of permutation matrices of width 5 .

Example: how to represent an AND gate

Representation of the constraint predicate: branching program

$$
\begin{array}{lllll}
1 & B_{1,1} & B_{2,1} & B_{3,1} \ldots B_{L, 1} \\
0 & B_{1,0} & B_{2,0} & B_{3,0} \ldots B_{L, 0}
\end{array} \quad \text { Eval: } \quad \prod B_{z(i), x_{-} z(i)}=I \text { or } C
$$

Steps $123 \ldots$ L

We set the secrets like:

Representation of secrets (to be encoded by GGH15): $\mathrm{B}_{\mathrm{i}, \mathrm{b}}{ }^{\otimes} \mathrm{S}_{\mathrm{i}, \mathrm{b}}$

$$
\text { e.g. } I \otimes s=
$$

s				
	s			
		s		
			s	
				s

$\mathrm{P} \otimes \mathrm{s}=$| | | | | S |
| :--- | :--- | :--- | :--- | :--- |
| S | | | | |
| | S | | | |
| | | | | |
| | | S | | |
| | | | s | |

NC1-CHCPRF from GGH15

Master public key: $A_{1} \ldots A_{L+1}(L=\#$ steps in BP) Master secret key: trapdoors of $A_{1} \ldots A_{L^{\prime}} S_{1,0}, s_{1,1^{\prime}} \ldots, S_{L, 0^{\prime}} S_{L, 1^{\prime}}$ \& J Constrained key gen: let $\mathrm{S}_{\mathrm{i}, \mathrm{b}}:=\mathrm{B}_{\mathrm{i}, \mathrm{b}} \otimes \mathrm{S}_{\mathrm{i}, \mathrm{b}^{\prime}}$ sample GGH 15 encodings for $\mathrm{S}_{\mathrm{i}, \mathrm{b}}$ Eval: $F(x)=\left\{J A_{1} \prod D_{i, x_{2}(i)}\right\}_{2}$ (z: [L]->[n] is the step-to-input mapping)

Constrained key:

NC1-CHCPRF from GGH15

Master public key: $A_{1} \ldots A_{L+1}(L=\#$ steps in BP)
Master secret key: trapdoors of $A_{1} \ldots A_{L^{\prime}} S_{1,0}, s_{1,1^{\prime}} \ldots, S_{L, 0^{\prime}} S_{L, 1^{\prime}} \& J$
Constrained key gen: let $\mathrm{S}_{\mathrm{i}, \mathrm{b}}:=\mathrm{B}_{\mathrm{i}, \mathrm{b}} \otimes \mathrm{S}_{\mathrm{i}, \mathrm{b}}$, sample GGH 15 encodings for $\mathrm{S}_{\mathrm{i}, \mathrm{b}}$
Eval: $F(x)=\left\{J A_{1} \prod D_{i, x_{2}(i)}\right\}_{2}$ (z: [L]->[n] is the step-to-input mapping)

Functionality check:
when $C(x)=1$,

when $C(x)=0$,

NC1-CHCPRF from GGH15 *

Compare to GGM

NC1-CHCPRF from GGH15 *

Compare to GGM

NC1-CHCPRF from GGH15 *
Example: $C(x)=0$ iff $x 1=x 2=1$ query $x=11$

What are we trying to simulate?

NC1-CHCPRF from GGH15 *

Example: $C(x)=0$ iff $x 1=x 2=1$ query $x=11$

Proof by example with 1 input query

Proof of NC1-CHCPRF:

- LWE with permutation-structured secrets + GPV sampling lemma
- Close the trapdoor from the right to the left

Thanks for your time

More in https://eprint.iacr.org/2017/143

