How Fast Can Higher-Order Masking Be in Software?

Dahmun Goudarzi and Matthieu Rivain

EUROCRYPT 2017, Paris

CRYPTOEXPERTS ${ }^{\text {品 }}$
WE INNOVATE TO SECURE YOUR BUSINESS

1. Introduction

2 - Field Multiplications
3. Non-Linear Operations
^ Generic Polynomial Methods
5 - Polynomial Methods for AES
6 The Bitslice Strategy

Higher-Order Masking

$$
x=x_{1}+x_{2}+\cdots+x_{d}
$$

Higher-Order Masking

$$
x=x_{1}+x_{2}+\cdots+x_{d}
$$

- Linear operations: $O(d)$

Higher-Order Masking

$$
x=x_{1}+x_{2}+\cdots+x_{d}
$$

- Linear operations: $O(d)$
- Non-linear operations: $O\left(d^{2}\right)$

Higher-Order Masking

$$
x=x_{1}+x_{2}+\cdots+x_{d}
$$

- Linear operations: $O(d)$
- Non-linear operations: $O\left(d^{2}\right)$
\rightarrow Challenge for blockciphers: S-boxes

Ishai-Sahai-Wagner Multiplication

$$
\sum_{i}^{a} a=\left(\sum_{i} a\right) \times\left(\sum_{i}^{a}\right)=\sum_{i=1} a \times b_{i}
$$

$$
\left(\begin{array}{cccc}
a_{1} b_{1} & a_{1} b_{2} & \ldots & a_{1} b_{d} \\
0 & a_{2} b_{2} & \ldots & \vdots \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & a_{d} b_{d}
\end{array}\right)+\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
a_{2} b_{1} & 0 & \ldots & \vdots \\
\vdots & \vdots & & \vdots \\
a_{d} b_{1} & a_{d} b_{2} & \ldots & 0
\end{array}\right)+\left(\begin{array}{cccc}
0 & r_{1,2} & \ldots & r_{1, d} \\
r_{1,2} & 0 & \ldots & \vdots \\
& & \ddots & r_{d, d-1} \\
r_{1, d} & & r_{d, d-1} & 0
\end{array}\right)
$$

The Polynomial Methods

- Sbox seen as a polynomial over $G F\left(2^{n}\right)$

$$
S(x)=\sum_{i=0}^{n} a_{i} x^{i}
$$

The Polynomial Methods

- Sbox seen as a polynomial over $G F\left(2^{n}\right)$

$$
S(x)=\sum_{i=0}^{n} a_{i} x^{i}
$$

Generic Methods

$$
S(x)=\sum_{i}\left(p_{i} \star q_{i}\right)(x)
$$

- CRV decomposition, $\star=\times$ (CHES 2014)
- Algebraic decomposition, $\star=\circ$ (CRYPTO 2015)

The Polynomial Methods

- Sbox seen as a polynomial over $\operatorname{GF}\left(2^{n}\right)$

$$
S(x)=\sum_{i=0}^{n} a_{i} x^{i}
$$

$$
\begin{gathered}
\text { Generic Methods } \\
S(x)=\sum_{i}\left(p_{i} \star q_{i}\right)(x)
\end{gathered}
$$

- CRV decomposition, $\star=\times$ (CHES 2014)
- Algebraic decomposition, $\star=\circ$ (CRYPTO 2015)

AES Specific Methods

$$
S_{\mathrm{AES}}(x)=\operatorname{Aff}\left(x^{254}\right)
$$

- RP multiplication chain (CHES 2010)
- KHL multiplication chain (CHES 2011)

Our results

- Optimized implementations of state of the art higher-order masking techniques
- Bottom-up approach:
- base field multiplication
- ISW/CPRR
- polynomial methods
- Finely tuned ARM assembly (parallelization)
- Alternative strategy: bitslice method (new AES and PRESENT speed records)
- 32-bit architecture with 16 registers (13 user accessible register)
- Barrelshifter: shifts and rotates virtually free
- Example: x-times and add on $\operatorname{GF}(2)[x]$ in 1 cycle

```
EOR $acc, $var, $acc, LSL #1
```

2. Field Multiplications
3. Non-Linear Operations
4. Generic Polynomial Methods

5 Polynomial Methods for AES
6. The Bitslice Strategy

Field Multiplication

- Goal: efficient implementation of multiplication over $\operatorname{GF}\left(2^{n}\right)$
- Fastest method: precomputed look-up table
- Limitation: constrained memory on embedded system

n	4	5	6	7	8	9	10
Table size	0.25 kiB	1 kiB	4 kiB	16 kiB	64 kiB	512 kiB	2048 kiB

Field Multiplication

	bin mult v1	bin mult v2	exp-log v1	exp-log v2	kara.	half-tab	full-tab
clock cycles	$10 n+3$	$7 n+3$	18	16	19	10	4
registers	5	5	5	5	6	5	5
code size	52	$2^{n-1}+48$	$2^{n+1}+48$	$3 \cdot 2^{n}+40$	$3 \cdot 2^{n}+42$	$2^{\frac{3 n}{2}+1}+24$	$2^{2 n}+12$

Field Multiplication

	bin mult v1	bin mult v2	exp-log v1	exp-log v2	kara.	half-tab	full-tab
clock cycles	$10 n+3$	$7 n+3$	18	16	19	10	4
registers	5	5	5	5	6	5	5
code size	52	$2^{n-1}+48$	$2^{n+1}+48$	$3 \cdot 2^{n}+40$	$3 \cdot 2^{n}+42$	$2^{\frac{3 n}{2}+1}+24$	$2^{2 n}+12$

$$
a \times b=\left(a_{h} x^{\frac{n}{2}}+a_{\ell}\right) \times\left(b_{h} x^{\frac{n}{2}}+b_{\ell}\right)
$$

Karatsuba $=\mathrm{T} 1\left[a_{h} \mid b_{h}\right]+\mathrm{T} 2\left[a_{\ell} \mid b_{\ell}\right]+\mathrm{T} 3\left[a_{h}+a_{\ell} \mid b_{h}+b_{\ell}\right]$

Field Multiplication

	bin mult v1	bin mult v2	exp-log v1	exp-log v2	kara.	half-tab	full-tab
clock cycles	$10 n+3$	$7 n+3$	18	16	19	10	4
registers	5	5	5	5	6	5	5
code size	52	$2^{n-1}+48$	$2^{n+1}+48$	$3 \cdot 2^{n}+40$	$3 \cdot 2^{n}+42$	$2^{\frac{3 n}{2}+1}+24$	$2^{2 n}+12$

$$
a \times b=\left(a_{h} x^{\frac{n}{2}}+a_{\ell}\right) \times\left(b_{h} x^{\frac{n}{2}}+b_{\ell}\right)
$$

Half table $=\mathrm{T} 1\left[a_{h}\left|a_{\ell}\right| b_{h}\right]+\mathrm{T} 2\left[a_{h}\left|a_{\ell}\right| b_{\ell}\right]$

Field Multiplication

	bin mult v1	bin mult v2	exp-log v1	exp-log v2	kara.	half-tab	full-tab
clock cycles	$10 n+3$	$7 n+3$	18	16	19	10	4
registers	5	5	5	5	6	5	5
code size	52	56 B	80 B	88 B	90 B	152 B	268 B

- For $n=4$: full table
- Fastest multiplication: 4 clock cycles
- Low code size: 268 B

Field Multiplication

	bin mult v1	bin mult v2	exp-log v1	exp-log v2	kara.	half-tab	full-tab
clock cycles	$10 n+3$	$7 n+3$	18	16	19	10	4
registers	5	5	5	5	6	5	5
code size	52	$176 ~ B$	560 B	808 B	810 B	8216 B	64 kiB

- For $n=8$: exp-log or half-tab
- tradeoff between clock cycles and code size

1 - Introduction
2 .Field Multiplications
3. Non-Linear Operations
4. Generic Polynomial Methods

5 - Polynomial Methods for AES
6 The Bitslice Strategy

Quadratic Operations

- ISW
- Secure GF-mult of 2 operands
- Might need refreshing (see paper for details)
- CPRR
- Evaluation of quadratic functions in 1 operand
- Similar to ISW: GF-mult \rightarrow lookup tables
- Twice more random

Performances Comparisons

- ISW < CPRR when table too huge
- Asymptotical comp: 1 CPRR $\rightarrow 1.16$ ISW-FT, 0.88 ISW-HT, 0.75 ISW-EL

Parallelization

- 32-bit register filled with only n-bit elements
- Perform several ISW/CPRR in parallel:
- $n=4 \rightarrow 8$ elements/register
- $n=8 \rightarrow 4$ elements/register
- Consequence:
- Parallel: load, store, xor, loops
- Sequential: GF mult, CPRR lookups

Performances Gain of Parallelization

- $n=8$ (4 elements)

- Asympt. ratio: CPRR 54\%.
- $n=4$ (8 elements)

- Asympt. ratio: ISW 42%.

2 .Field Multiplications
3-Non-Linear Operations
4 - Generic Polynomial Methods
5 - Polynomial Methods for AES
6. The Bitslice Strategy

Polynomial Decomposition

$$
S(x)=\sum_{i} q_{i}(x) \star p_{i}(x)
$$

Polynomial Decomposition

$$
S(x)=\sum_{i} q_{i}(x) \star p_{i}(x)
$$

- q_{i} : random linear combinations from a basis \mathcal{B}

Polynomial Decomposition

$$
S(x)=\sum_{i} q_{i}(x) \star p_{i}(x)
$$

- q_{i} : random linear combinations from a basis \mathcal{B}
- find p_{i} by solving a linear system

Polynomial Decomposition

$$
S(x)=\sum_{i} q_{i}(x) \star p_{i}(x)
$$

- q_{i} : random linear combinations from a basis \mathcal{B}
- find p_{i} by solving a linear system
- CRV vs AD:
- CRV [CRV14]: $\star=$ GF-multiplication \rightarrow ISW multiplication
- AD [CPRR15]: $\star=$ composition $\quad \rightarrow$ CPRR evaluation

CRV Improvement

- Use CPRR for the basis computation
- Example for $n=8$:

$$
\begin{aligned}
& \text { CRV } \\
& x^{3}= x \cdot x^{2} \\
& x^{7}= x \cdot\left(x^{3}\right)^{2} \\
& x^{29}= x \cdot\left(x^{7}\right)^{4} \\
& x^{87}= x^{3} \cdot x^{29} \\
& x^{251}=\left(x^{6}\right)^{16} \cdot\left(x^{87}\right)^{128} \\
& \text { 5 ISW }
\end{aligned}
$$

This paper

$$
x^{3}=x^{3}
$$

$$
x^{9}=\left(x^{3}\right)^{3}
$$

$$
x^{5}=x^{5}
$$

$$
x^{25}=\left(x^{5}\right)^{5}
$$

$$
x^{125}=\left(x^{25}\right)^{5}
$$

$$
x^{115}=\left(x^{125}\right)^{5}
$$

6 CPRR

Implementation Results

- $n=4$ (8 s-boxes in //)

- $n=8$ (4 s-boxes in //)

2 Field Multiplications
3. Non-Linear Operations
4. Generic Polynomial Methods

5 - Polynomial Methods for AES
6. The Bitslice Strategy

Polynomial Methods for AES

- Based on the specific algebraic structure of the AES:

$$
S(x)=\operatorname{Aff}\left(x^{254}\right)
$$

- RP10 method : 4 ISW mult
\rightarrow Security flaw due to refreshing
\rightarrow Patch [CPRR13]: 1 CPRR +3 ISW
\rightarrow Improvement [GPS14]: 3 CPRR + 1 ISW
- KHL11 method: 5 ISW mult on GF(16)
\rightarrow Patch [this paper]: 1 CPRR +4 ISW

Implementation Results

- 16 s-boxes in //

- KHL $<$ RP-*: smaller elements \rightarrow higher parallelization degree

2 Field Multiplications
3. Non-Linear Operations
4. Generic Polynomial Methods

5 - Polynomial Methods for AES
6 - The Bitslice Strategy

Bitslice for the AES

- Sbox seen as boolean circuit

- 16 S-boxes in //

Application for AES S-boxes

- Circuit for the AES S-box [BMP13]
- 83 XOR gates
- 32 AND gates
- Bitslice (16 s-boxes)
- 83 XOR instructions
- 32 AND instructions
- Masking at the order d :
- $83 \times d$ XOR instructions
- 32 ISW-AND

Improvement

2 16-bit ISW-AND $\rightarrow 1$ 32-bit ISW-AND

- Goal: grouping AND gates per pairs
- Validation on BMP circuit
- 16 s-boxes $=16$ ISW-AND $\rightarrow 1$ ISW-AND per s-box

Performance Comparison of ISW

Performances for AES S-box

- 16 S-boxes in //

- RP-HT: 1 ISW-HT/CPRR per s-box
- KHL: 0.83 ISW-FT/CPRR per s-box
- Bitslice: 1 ISW-AND per s-box

AES vs Generic

- 16 S-boxes in //

- KHL $3.1 \times$ faster than AD (for $n=8$)
- Bitslice $2.3 \times$ faster than KHL

Timing for AES and PRESENT Block-Cipher

	$d=2$	$d=3$	$d=4$	$d=5$	$d=10$
Bitslice AES	0.89 ms	1.39 ms	1.99 ms	2.7 ms	8.01 ms
Bitslice PRESENT	0.62 ms	0.96 ms	1.35 ms	1.82 ms	5.13 ms

- Clock frequency: 60 MHZ

Conclusion

- Case study on ARM: barrelshifter and 32-bit registers

Conclusion

- Case study on ARM: barrelshifter and 32-bit registers
- Selection of best field multiplication algorithms:
- New proposed method: half-table
- For $n=4$, full tabulated (4 clock cycles and 268B)
- For $n-8$, trade-off between exp-log and half-table

Conclusion

- Case study on ARM: barrelshifter and 32-bit registers
- Selection of best field multiplication algorithms:
- New proposed method: half-table
- For $n=4$, full tabulated (4 clock cycles and 268B)
- For $n-8$, trade-off between exp-log and half-table
- Optimization of non-linear operations
- CPRR > ISW when table too huge
- Smaller elements \rightarrow higher parallelization degree

Conclusion

- Case study on ARM: barrelshifter and 32-bit registers
- Selection of best field multiplication algorithms:
- New proposed method: half-table
- For $n=4$, full tabulated (4 clock cycles and 268B)
- For $n-8$, trade-off between exp-log and half-table
- Optimization of non-linear operations
- CPRR > ISW when table too huge
- Smaller elements \rightarrow higher parallelization degree
- Generic polynomial methods:
- New optimal parameters for CRV with CPRR evaluations
- Depending on n, trade-off between AD and CRV

Conclusion

- Case study on ARM: barrelshifter and 32-bit registers
- Selection of best field multiplication algorithms:
- New proposed method: half-table
- For $n=4$, full tabulated (4 clock cycles and 268B)
- For $n-8$, trade-off between exp-log and half-table
- Optimization of non-linear operations
- CPRR > ISW when table too huge
- Smaller elements \rightarrow higher parallelization degree
- Generic polynomial methods:
- New optimal parameters for CRV with CPRR evaluations
- Depending on n, trade-off between AD and CRV
- Polynomial methods for AES:
- KHL $>$ RP because of manipulations of higher parallelization degree

Conclusion

- Case study on ARM: barrelshifter and 32-bit registers
- Selection of best field multiplication algorithms:
- New proposed method: half-table
- For $n=4$, full tabulated (4 clock cycles and 268B)
- For $n-8$, trade-off between exp-log and half-table
- Optimization of non-linear operations
- CPRR > ISW when table too huge
- Smaller elements \rightarrow higher parallelization degree
- Generic polynomial methods:
- New optimal parameters for CRV with CPRR evaluations
- Depending on n, trade-off between AD and CRV
- Polynomial methods for AES:
- KHL $>$ RP because of manipulations of higher parallelization degree
- Pushing the parallelization to the optimal: bitslice strategy
- Reordering of Boolean circuit for optimal use of registers
- Better than any polynomials methods for AES and Present

Conclusion

- Case study on ARM: barrelshifter and 32-bit registers
- Selection of best field multiplication algorithms:
- New proposed method: half-table
- For $n=4$, full tabulated (4 clock cycles and 268B)
- For $n-8$, trade-off between exp-log and half-table
- Optimization of non-linear operations
- CPRR > ISW when table too huge
- Smaller elements \rightarrow higher parallelization degree
- Generic polynomial methods:
- New optimal parameters for CRV with CPRR evaluations
- Depending on n, trade-off between AD and CRV
- Polynomial methods for AES:
- KHL > RP because of manipulations of higher parallelization degree
- Pushing the parallelization to the optimal: bitslice strategy
- Reordering of Boolean circuit for optimal use of registers
- Better than any polynomials methods for AES and Present
\rightarrow Can we use Bitslice for generic methods?
$C_{\text {RYPTO }}$ EXPERTS ${ }^{\text {品 }}$

Conclusion

- Case study on ARM: barrelshifter and 32-bit registers
- Selection of best field multiplication algorithms:
- New proposed method: half-table
- For $n=4$, full tabulated (4 clock cycles and 268B)
- For $n-8$, trade-off between exp-log and half-table
- Optimization of non-linear operations
- CPRR > ISW when table too huge
- Smaller elements \rightarrow higher parallelization degree
- Generic polynomial methods:
- New optimal parameters for CRV with CPRR evaluations
- Depending on n, trade-off between AD and CRV
- Polynomial methods for AES:
- KHL > RP because of manipulations of higher parallelization degree
- Pushing the parallelization to the optimal: bitslice strategy
- Reordering of Boolean circuit for optimal use of registers
- Better than any polynomials methods for AES and Present
\rightarrow Can we use Bitslice for generic methods? Yes, GR16 [CHES 2016]
CRYPTOEXPERTS ${ }^{\text {品 }}$

Questions?

