How Fast Can Higher-Order Masking Be in Software?

Dahmun Goudarzi and Matthieu Rivain

EUROCRYPT 2017, Paris

- 1 Introduction
- 2 Field Multiplications
- 3 Non-Linear Operations
- 4 Generic Polynomial Methods
- 5 Polynomial Methods for AES
- **6** The Bitslice Strategy

$$\mathbf{x} = x_1 + x_2 + \dots + x_d$$

$$\mathbf{x} = x_1 + x_2 + \cdots + x_d$$

• Linear operations: O(d)

$$\mathbf{x} = x_1 + x_2 + \cdots + x_d$$

- Linear operations: O(d)
- Non-linear operations: $O(d^2)$

$$\mathbf{x} = x_1 + x_2 + \dots + x_d$$

- Linear operations: O(d)
- Non-linear operations: $O(d^2)$
 - → Challenge for blockciphers: S-boxes

Ishai-Sahai-Wagner Multiplication

$$\sum_{i} c_{i} = \left(\sum_{i} a_{i}\right) \times \left(\sum_{i} b_{i}\right) = \sum_{i,j} a_{i} \times b_{j}$$

$$\begin{pmatrix} a_1b_1 & a_1b_2 & \dots & a_1b_d \\ 0 & a_2b_2 & \dots & \vdots \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & a_db_d \end{pmatrix} + \begin{pmatrix} 0 & 0 & \dots & 0 \\ a_2b_1 & 0 & \dots & \vdots \\ \vdots & \vdots & & \vdots \\ a_db_1 & a_db_2 & \dots & 0 \end{pmatrix} + \begin{pmatrix} 0 & r_{1,2} & \dots & r_{1,d} \\ r_{1,2} & 0 & \dots & \vdots \\ & & \ddots & r_{d,d-1} \\ r_{1,d} & & r_{d,d-1} & 0 \end{pmatrix}$$

The Polynomial Methods

• Sbox seen as a polynomial over $GF(2^n)$

$$S(x) = \sum_{i=0}^{n} a_i x^i$$

The Polynomial Methods

• Sbox seen as a polynomial over $GF(2^n)$

$$S(x) = \sum_{i=0}^{n} a_i x^i$$

Generic Methods

$$S(x) = \sum_{i} (p_i \star q_i)(x)$$

- CRV decomposition, $\star = \times$ (CHES 2014)
- Algebraic decomposition, * = (CRYPTO 2015)

The Polynomial Methods

• Sbox seen as a polynomial over $GF(2^n)$

$$S(x) = \sum_{i=0}^{n} a_i x^i$$

Generic Methods

$$S(x) = \sum_{i} (p_i \star q_i)(x)$$

- CRV decomposition, $\star = \times$ (CHES 2014)
- Algebraic decomposition, ★ = (CRYPTO 2015)

AES Specific Methods

$$S_{\text{AES}}(x) = \mathsf{Aff}(x^{254})$$

- RP multiplication chain (CHES 2010)
- KHL multiplication chain (CHES 2011)

Our results

- Optimized implementations of state of the art higher-order masking techniques
- Bottom-up approach:
 - base field multiplication
 - ► ISW/CPRR
 - polynomial methods
- Finely tuned ARM assembly (parallelization)
- Alternative strategy: bitslice method (new AES and PRESENT speed records)

ARM

- 32-bit architecture with 16 registers (13 user accessible register)
- Barrelshifter: shifts and rotates virtually free
- **Example:** x-times and add on GF(2)[x] in 1 cycle

- 1 Introduction
- 2 Field Multiplications
- 3 Non-Linear Operations
- 4 Generic Polynomial Methods
- 5 Polynomial Methods for AES
- **6** The Bitslice Strategy

- Goal: efficient implementation of multiplication over $GF(2^n)$
- Fastest method: precomputed look-up table
- Limitation: constrained memory on embedded system

n	4	5	6	7	8	9	10
Table size	0.25 kiB	1 kiB	4 kiB	16 kiB	64 kiB	512 kiB	2048 kiB

	bin mult v1	bin mult v2	exp-log v1	exp-log v2	kara.	half-tab	full-tab
clock cycles	10n + 3	7n + 3	18	16	19	10	4
registers	5	5	5	5	6	5	5
code size	52	$2^{n-1} + 48$	$2^{n+1} + 48$	$3 \cdot 2^n + 40$	$3 \cdot 2^n + 42$	$2^{\frac{3n}{2}+1} + 24$	$2^{2n} + 12$

	bin mult v1	bin mult v2	exp-log v1	exp-log v2	kara.	half-tab	full-tab
clock cycles	10n + 3	7n + 3	18	16	19	10	4
registers	5	5	5	5	6	5	5
code size	52	$2^{n-1} + 48$	$2^{n+1} + 48$	$3 \cdot 2^n + 40$	$3 \cdot 2^n + 42$	$2^{\frac{3n}{2}+1} + 24$	$2^{2n} + 12$

$$a \times b = \left(\mathbf{a}_h \, x^{\frac{n}{2}} + \mathbf{a}_\ell \right) \times \left(b_h \, x^{\frac{n}{2}} + b_\ell \right)$$

$$\mathsf{Karatsuba} = \mathrm{T1}[\ a_{\pmb{h}} \mid b_{h}\] + \mathrm{T2}[\ a_{\pmb{\ell}} \mid b_{\ell}\] + \mathrm{T3}[\ a_{\pmb{h}} + a_{\pmb{\ell}} \mid b_{h} + b_{\ell}\]$$

	bin mult v1	bin mult v2	exp-log v1	exp-log v2	kara.	half-tab	full-tab
clock cycles	10n + 3	7n + 3	18	16	19	10	4
registers	5	5	5	5	6	5	5
code size	52	$2^{n-1} + 48$	$2^{n+1} + 48$	$3 \cdot 2^n + 40$	$3 \cdot 2^n + 42$	$2^{\frac{3n}{2}+1} + 24$	$2^{2n} + 12$

$$a \times b = (\mathbf{a}_h x^{\frac{n}{2}} + \mathbf{a}_\ell) \times (b_h x^{\frac{n}{2}} + b_\ell)$$

$$\mathsf{Half \ table} = \mathrm{T1}[\ a_h \mid a_\ell \mid b_h\] + \mathrm{T2}[\ a_h \mid a_\ell \mid b_\ell\]$$

	bin mult v1	bin mult v2	exp-log v1	exp-log v2	kara.	half-tab	full-tab
clock cycles	10n + 3	7n + 3	18	16	19	10	4
registers	5	5	5	5	6	5	5
code size	52	56 B	80 B	88 B	90 B	152 B	268 B

For n=4: full table

▶ Fastest multiplication: 4 clock cycles

▶ Low code size: 268 B

	bin mult v1	bin mult v2	exp-log v1	exp-log v2	kara.	half-tab	full-tab
clock cycles	10n + 3	7n + 3	18	16	19	10	4
registers	5	5	5	5	6	5	5
code size	52	176 B	560 B	808 B	810 B	8216 B	64 kiB

- For n = 8: exp-log or half-tab
 - ▶ tradeoff between clock cycles and code size

- 1 Introduction
- 2 Field Multiplications
- 3 Non-Linear Operations
- 4 Generic Polynomial Methods
- 5 Polynomial Methods for AES
- **6** The Bitslice Strategy

Quadratic Operations

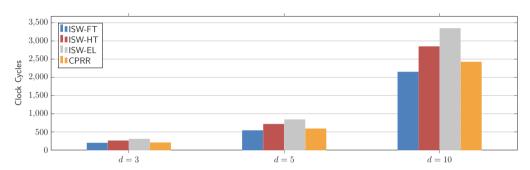
ISW

- ► Secure GF-mult of 2 operands
- ▶ Might need refreshing (see paper for details)

CPRR

- ▶ Evaluation of quadratic functions in 1 operand
- Similar to ISW: GF-mult → lookup tables
- ▶ Twice more random

Performances Comparisons



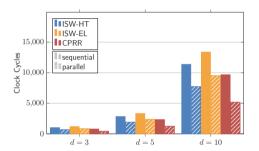
- ISW < CPRR when table too huge
- Asymptotical comp: 1 CPRR → 1.16 ISW-FT, 0.88 ISW-HT, 0.75 ISW-EL

Parallelization

- 32-bit register filled with only *n*-bit elements
- Perform several ISW/CPRR in parallel:
 - ▶ $n = 4 \rightarrow 8$ elements/register
 - ▶ $n = 8 \rightarrow 4$ elements/register
- Consequence:
 - ▶ Parallel: load, store, xor, loops
 - ▶ Sequential: GF mult, CPRR lookups

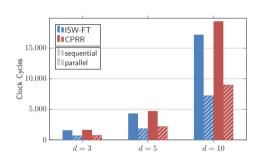
Performances Gain of Parallelization

$$n = 8$$
 (4 elements)



Asympt. ratio: CPRR 54%.

$$n = 4$$
 (8 elements)



■ Asympt. ratio: ISW 42%.

- 1 Introduction
- 2 Field Multiplications
- 3 Non-Linear Operations
- 4 Generic Polynomial Methods
- 5 Polynomial Methods for AES
- **6** The Bitslice Strategy

$$S(x) = \sum_{i} q_i(x) \star p_i(x)$$

$$S(x) = \sum_{i} q_i(x) \star p_i(x)$$

lacksquare q_i : random linear combinations from a basis \mathcal{B}

$$S(x) = \sum_{i} q_i(x) \star p_i(x)$$

- $\blacksquare q_i$: random linear combinations from a basis \mathcal{B}
- find p_i by solving a linear system

$$S(x) = \sum_{i} q_i(x) \star p_i(x)$$

- ullet q_i : random linear combinations from a basis ${\cal B}$
- find p_i by solving a linear system
- CRV vs AD:
 - ► CRV [CRV14]: * = GF-multiplication → ISW multiplication
 - ▶ AD [CPRR15]: $\star =$ composition \rightarrow CPRR evaluation

CRV Improvement

- Use CPRR for the basis computation
- **Example** for n = 8:

CRV

$$x^{3} = x \cdot x^{2}$$

$$x^{7} = x \cdot (x^{3})^{2}$$

$$x^{29} = x \cdot (x^{7})^{4}$$

$$x^{87} = x^{3} \cdot x^{29}$$

$$x^{251} = (x^{6})^{16} \cdot (x^{87})^{128}$$

5 ISW

This paper

$$x^{3} = x^{3}$$

$$x^{9} = (x^{3})^{3}$$

$$x^{5} = x^{5}$$

$$x^{25} = (x^{5})^{5}$$

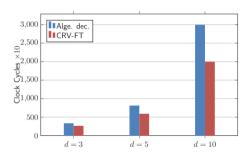
$$x^{125} = (x^{25})^{5}$$

$$x^{115} = (x^{125})^{5}$$

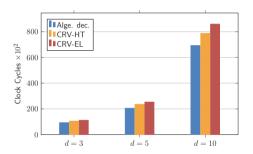
6 CPRR

Implementation Results

 $n = 4 \ (8 \text{ s-boxes in } //)$



n = 8 (4 s-boxes in //)



- 1 Introduction
- 2 Field Multiplications
- 3 Non-Linear Operations
- 4 Generic Polynomial Methods
- 5 Polynomial Methods for AES
- **6** The Bitslice Strategy

Polynomial Methods for AES

Based on the specific algebraic structure of the AES:

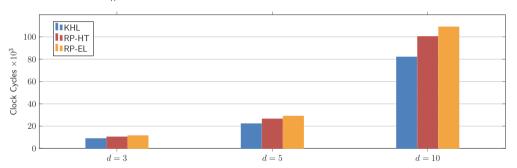
$$S(x) = \text{Aff}(x^{254})$$

21/32

- RP10 method : 4 ISW mult
 - → Security flaw due to refreshing
 - → Patch [CPRR13]: 1 CPRR + 3 ISW
 - → Improvement [GPS14]: 3 CPRR + 1 ISW
- KHL11 method: 5 ISW mult on GF(16)
 - → Patch [this paper]: 1 CPRR + 4 ISW

Implementation Results

■ 16 s-boxes in //

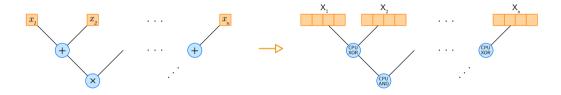


■ KHL < RP-*: smaller elements → higher parallelization degree

- 1 Introduction
- 2 Field Multiplications
- 3 Non-Linear Operations
- 4 Generic Polynomial Methods
- 5 Polynomial Methods for AES
- **6** The Bitslice Strategy

Bitslice for the AES

Sbox seen as boolean circuit



■ 16 S-boxes in //

Application for AES S-boxes

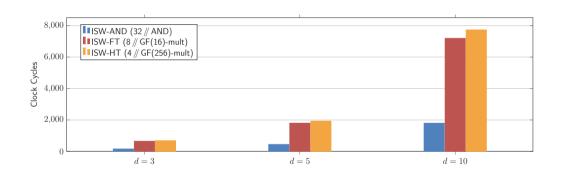
- Circuit for the AES S-box [BMP13]
 - ▶ 83 XOR gates
 - ▶ 32 AND gates
- Bitslice (16 s-boxes)
 - ▶ 83 XOR instructions
 - ▶ 32 AND instructions
- Masking at the order *d*:
 - \blacktriangleright 83 \times d XOR instructions
 - ▶ 32 ISW-AND

Improvement

2 16-bit ISW-AND → 1 32-bit ISW-AND

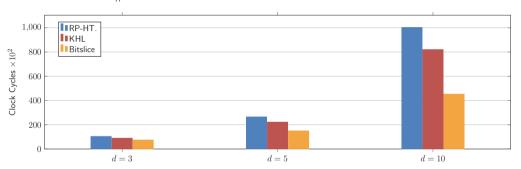
- Goal: grouping AND gates per pairs
- Validation on BMP circuit
- 16 s-boxes = 16 ISW-AND → 1 ISW-AND per s-box

Performance Comparison of ISW



Performances for AES S-box

■ 16 S-boxes in //

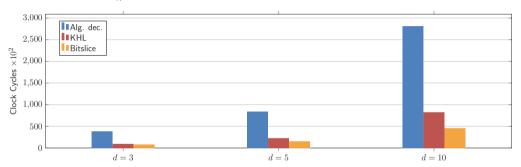


- RP-HT: 1 ISW-HT/CPRR per s-box
- KHL: 0.83 ISW-FT/CPRR per s-box
- Bitslice: 1 ISW-AND per s-box

AES vs Generic

■ 16 S-boxes in //

CPYPTO EXPERTS ...



- KHL $3.1 \times$ faster than AD (for n = 8)
- Bitslice 2.3× faster than KHL

Timing for AES and PRESENT Block-Cipher

	d=2	d=3	d=4	d=5	d = 10
Bitslice AES	$0.89~\mathrm{ms}$	$1.39~\mathrm{ms}$	$1.99~\mathrm{ms}$	$2.7~\mathrm{ms}$	8.01 ms
Bitslice PRESENT	$0.62~\mathrm{ms}$	$0.96~\mathrm{ms}$	$1.35 \; \mathrm{ms}$	$1.82~\mathrm{ms}$	$5.13~\mathrm{ms}$

Clock frequency: 60 MHZ

Case study on ARM: barrelshifter and 32-bit registers

- Case study on ARM: barrelshifter and 32-bit registers
- Selection of best field multiplication algorithms:
 - ▶ New proposed method: half-table
 - ▶ For n = 4, full tabulated (4 clock cycles and 268B)
 - ullet For n-8, trade-off between exp-log and half-table

- Case study on ARM: barrelshifter and 32-bit registers
- Selection of best field multiplication algorithms:
 - ▶ New proposed method: half-table
 - For n=4, full tabulated (4 clock cycles and 268B)
 - \blacktriangleright For n-8, trade-off between exp-log and half-table
- Optimization of non-linear operations
 - ▶ CPRR > ISW when table too huge
 - ► Smaller elements → higher parallelization degree

- Case study on ARM: barrelshifter and 32-bit registers
- Selection of best field multiplication algorithms:
 - ▶ New proposed method: half-table
 - For n=4, full tabulated (4 clock cycles and 268B)
 - \blacktriangleright For n-8, trade-off between exp-log and half-table
- Optimization of non-linear operations
 - ▶ CPRR > ISW when table too huge
 - ► Smaller elements → higher parallelization degree
- Generic polynomial methods:
 - ▶ New optimal parameters for CRV with CPRR evaluations
 - ightharpoonup Depending on n, trade-off between AD and CRV

- Case study on ARM: barrelshifter and 32-bit registers
- Selection of best field multiplication algorithms:
 - ▶ New proposed method: half-table
 - ▶ For n = 4, full tabulated (4 clock cycles and 268B)
 - ▶ For n-8, trade-off between exp-log and half-table
- Optimization of non-linear operations
 - ▶ CPRR > ISW when table too huge
 - ► Smaller elements → higher parallelization degree
- Generic polynomial methods:
 - ▶ New optimal parameters for CRV with CPRR evaluations
 - ightharpoonup Depending on n, trade-off between AD and CRV
- Polynomial methods for AES:
 - ▶ KHL > RP because of manipulations of higher parallelization degree

- Case study on ARM: barrelshifter and 32-bit registers
- Selection of best field multiplication algorithms:
 - ▶ New proposed method: half-table
 - For n=4, full tabulated (4 clock cycles and 268B)
 - \blacktriangleright For n-8, trade-off between exp-log and half-table
- Optimization of non-linear operations
 - ▶ CPRR > ISW when table too huge
 - ► Smaller elements → higher parallelization degree
- Generic polynomial methods:
 - ▶ New optimal parameters for CRV with CPRR evaluations
 - ightharpoonup Depending on n, trade-off between AD and CRV
- Polynomial methods for AES:
 - ▶ KHL > RP because of manipulations of higher parallelization degree
- Pushing the parallelization to the optimal: bitslice strategy
 - ▶ Reordering of Boolean circuit for optimal use of registers
 - ▶ Better than any polynomials methods for AES and Present

- Case study on ARM: barrelshifter and 32-bit registers
- Selection of best field multiplication algorithms:
 - ▶ New proposed method: half-table
 - For n=4, full tabulated (4 clock cycles and 268B)
 - ▶ For n-8, trade-off between exp-log and half-table
- Optimization of non-linear operations
 - ▶ CPRR > ISW when table too huge
 - ▶ Smaller elements → higher parallelization degree
- Generic polynomial methods:
 - ▶ New optimal parameters for CRV with CPRR evaluations
 - ▶ Depending on n, trade-off between AD and CRV
- Polynomial methods for AES:
 - ▶ KHL > RP because of manipulations of higher parallelization degree
- Pushing the parallelization to the optimal: bitslice strategy
 - ▶ Reordering of Boolean circuit for optimal use of registers
 - ▶ Better than any polynomials methods for AES and Present
 - → Can we use Bitslice for generic methods?

- Case study on ARM: barrelshifter and 32-bit registers
- Selection of best field multiplication algorithms:
 - ▶ New proposed method: half-table
 - ▶ For n = 4, full tabulated (4 clock cycles and 268B)
 - \blacktriangleright For n-8, trade-off between exp-log and half-table
- Optimization of non-linear operations
 - ightharpoonup CPRR > ISW when table too huge
 - ► Smaller elements → higher parallelization degree
- Generic polynomial methods:
 - ▶ New optimal parameters for CRV with CPRR evaluations
 - ightharpoonup Depending on n, trade-off between AD and CRV
- Polynomial methods for AES:
 - ▶ KHL > RP because of manipulations of higher parallelization degree
- Pushing the parallelization to the optimal: bitslice strategy
 - ▶ Reordering of Boolean circuit for optimal use of registers
 - ▶ Better than any polynomials methods for AES and Present
 - \rightarrow Can we use Bitslice for generic methods? Yes, GR16 [CHES 2016]

Questions?

