A kilobit hidden SNFS discrete log computation

Joshua Fried, Pierrick Gaudry, Nadia Heninger, Emmanuel Thomé

May 1, 2017
Textbook (Finite-Field) Diffie-Hellman Key Exchange

[Diffie Hellman 1976]

- p a prime (so \mathbb{F}_p^* is a cyclic group)
- $g < p$ group generator (often 2 or 5)

Images from XKCD
Where do group parameters come from?

- Protocol Specifications (RFCs)
 - TLS 1.3, SSH, IPsec (IKE)

- Distributed in implementations
 - Apache webserver, OpenSSH server, Java JDK

- Generated by users
 - Possible in SSH and TLS prior to version 1.3
 - 80% of TLS hosts use 1 of 10 primes
Our work

1. What does backdooring a prime look like?

2. Is it detectable?

3. What sort of computation would be required today?

4. Impact for currently deployed crypto
Number field sieve discrete log algorithm

[Gordon], [Joux, Lercier], [Semaev]

1. **Polynomial selection**: Find a good choice of number field K.

2. **Relation collection**: Factor elements over \mathcal{O}_K and over \mathbb{Z}.

3. **Linear algebra**: Once there are enough relations, solve for logs of small elements.

4. **Individual log**: “Descent” Try to write target t as sum of logs in known database.
How long does it take to compute discrete logs?
(For the “general” number field sieve)

Answer 1:

\[L_p(1/3, 1.923) = \exp(1.923 (\log p)^{1/3} (\log \log p)^{2/3}) \]
How long does it take to compute discrete logs?
(For the “general” number field sieve)

Answer 1:

\[L_p(1/3, 1.923) = \exp(1.923 (\log p)^{1/3} (\log \log p)^{2/3}) \]

\[L_p(1/3, 1.232) \]
How long does it take to compute discrete logs?
(For the “general” number field sieve)

Answer 2:

<table>
<thead>
<tr>
<th></th>
<th>Precomputation core-years</th>
<th>Individual Log core-time</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSA-512</td>
<td>[Cavallar et al. 1999]</td>
<td>1</td>
</tr>
<tr>
<td>DH-512</td>
<td>[Adrian et al. 2015]</td>
<td>10</td>
</tr>
<tr>
<td>RSA-768</td>
<td>[Kleinjung et al. 2009]</td>
<td>1,000</td>
</tr>
<tr>
<td>DH-768</td>
<td>[Kleinjung et al. 2016]</td>
<td>5,000</td>
</tr>
<tr>
<td>RSA-1024</td>
<td>(estimate)</td>
<td>1,000,000</td>
</tr>
<tr>
<td>DH-1024</td>
<td>(estimate)</td>
<td>(\approx10,000,000)</td>
</tr>
</tbody>
</table>
“Easy” Polynomial Selection

1. Choose \(m \approx p^{1/6} \). Write \(p \) in base \(m \):

\[
p = f_6 m^6 + f_5 m^5 + \cdots + f_0
\]

2. Then a suitable pair of polynomials for NFS is

\[
f(x) = f_6 x^6 + \cdots + f_0 \quad g(x) = x - m
\]

\(f, g \) share common root mod \(p \).

3. Expect \(|f_i| \approx |p^{1/6}| \).

4. Size of numbers to be sieved depends on \(|f_i|, m \). Smaller size \(\rightarrow \) higher probability of being \(B \)-smooth \(\rightarrow \) less work to find each relation.
The “special” number field sieve

Even easier polynomial selection!

1. Consider Mersenne number \(n = 2^k - 1 \).
2. Assume \(6 \mid k \). Let \(m = 2^{k/6} \) so we have \(f(x) = x^6 - 1 \) and \(g(x) = x - m \).

Impact for discrete log:

<table>
<thead>
<tr>
<th></th>
<th>GNFS core-years</th>
<th>SNFS core-years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptotically</td>
<td>(L_p(1/3, 1.923))</td>
<td>(L_p(1/3, 1.526))</td>
</tr>
<tr>
<td>DH-768</td>
<td>5,000</td>
<td>60</td>
</tr>
<tr>
<td>DH-1024</td>
<td>(\approx 10,000,000)</td>
<td>400</td>
</tr>
</tbody>
</table>
Flashback to the crypto wars of the 1990s

- 1991: NIST proposed draft standard for discrete log-based Digital Signature Algorithm (DSA)

Params:
- p 512-bit prime modulus
- g generates subgroup of 160-bit prime order q

- A. Lenstra: Primes can be trapdoored if they include hidden SNFS structure.
How to trapdoor a DSA prime.

[Gordon 92]

Want to construct primes p, q such that $q \mid p - 1$ and

$$f(x) = f_6x^6 + \cdots + f_0, \quad g(x) = g_1x + g_0$$

such that $p \mid \text{Res}(f, g)$.

Slow algorithm:
1. Choose random f, g.
2. Check if $p = \text{Res}(f, g)$ prime.
3. Factor $p - 1$ with ECM.
4. Repeat until $p - 1$ has 160-bit prime factor.
How to trapdoor a DSA prime.

[Gordon 92]

Want to construct primes p, q such that $q | p - 1$ and

$$f(x) = f_6 x^6 + \cdots + f_0, \quad g(x) = g_1 x + g_0$$

such that $p | \text{Res}(f, g)$.

Better algorithm:

1. Choose $f(x), q, g_0$.
2. Want $q | \text{Res}(f(x), g_1 x - g_0) - 1$.
3. Compute $G(g_1) = \text{Res}(f(x), g_1 x - g_0) - 1$.
4. Compute root $G(r) \equiv 0 \mod q; \ g_1 = r + c q$.
5. Repeat until $\text{Res}(f(x), g_1 x - g_0)$ prime.
Detecting the trapdoor

- "Easy" if $g(x) = x + g_0$ or similar.
 1. Brute force leading coefficient f_d of f.
 2. Search values of g_0 near $(p/f_d)^{1/d}$.
 3. Use LLL to search for other small coefficients of f.

- If $g(x) = g_1x + g_0$ don’t know a way that doesn’t require brute forcing coefficients of f or g.

- **Open Problem:** Given $p = \text{Res}(f, g_1x + g_0)$ and f has small coefficients, find f, g.
Crafting the trapdoor

- 1992-era parameters: 512-bit p, 160-bit q
 - Forces $\deg f = 3$; suboptimal for NFS.
 - f chosen from small set so not well hidden.

—A. Lenstra, Eurocrypt 1992 Panel on DSA

DSA standard: optional “verifiably random” prime generation.
Crafting the trapdoor

- 1992-era parameters: 512-bit p, 160-bit q
 - Forces $\deg f = 3$; suboptimal for NFS.
 - f chosen from small set so not well hidden.

“... this trap only makes sense for primes up to [600 bits]. Furthermore, this kind of trap can be detected, although this requires more work than an average user will be able to invest.”
—A. Lenstra, Eurocrypt 1992 Panel on DSA

- DSA standard: *optional* “verifiably random” prime generation.
Crafting the trapdoor in the modern era

Gordon’s trapdoor construction remains best construction.

- Modern parameters: 1024-bit p, 160-bit q
 - Can choose $\deg f = 6$, optimal for NFS.
 - Choose $|f_i| \approx 2^{11}$.
 - Brute force search to find $f \approx 2^{80} \approx$ cost of Pollard rho for q.
 - Don’t know of better way to detect trapdoor.
Exploiting the trapdoor in the modern era

1. Generated target prime in 12 core-hours.

\[p = 16332398724044367910140207009304915503098943980691751 \\
91735800707915692277289328503584988628543993514237336 \\
97660534800194492724828721314980248259450358792069235 \\
99182658894420044068709413666950634909369176890244055 \\
53414932372965552542473794227022215159298376298136008 \\
12082006124038089463610239236157651252180491 \]
\[q = 1120320311183071261988433674300182306029096710473, \]

\[f = 1155 x^6 + 1090 x^5 + 440 x^4 + 531 x^3 - 348 x^2 - 223 x - 1385 \]
\[g = 567162312818120432489991568785626986771201829237408 x \\
-663612177378148694314176730818181556491705934826717. \]
Exploiting the trapdoor in the modern era

2. Run discrete log computation mod p.

<table>
<thead>
<tr>
<th></th>
<th>sieving</th>
<th>linear algebra</th>
<th>individual log</th>
</tr>
</thead>
<tbody>
<tr>
<td>cores</td>
<td>≈ 3000</td>
<td>2056</td>
<td>576</td>
</tr>
<tr>
<td>CPU time (core)</td>
<td>240 years</td>
<td>123 years</td>
<td>13 years</td>
</tr>
<tr>
<td>calendar time</td>
<td>1 month</td>
<td>1 month</td>
<td>80 minutes</td>
</tr>
</tbody>
</table>
3. Are there SNFS primes in the wild?
Exploiting the trapdoor in the modern era

3. Are there SNFS primes in the wild?

Non-hidden: yes.

<table>
<thead>
<tr>
<th>Prime</th>
<th>NFS time</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p = 2^{512} - 38117$</td>
<td>215 minutes</td>
<td>Internet Scanning</td>
</tr>
<tr>
<td></td>
<td>1288 cores</td>
<td>121 TLS hosts</td>
</tr>
<tr>
<td>$p = 2^{784} - 2^{28} + 1027679$</td>
<td>23 days</td>
<td>LibTomCrypt</td>
</tr>
<tr>
<td></td>
<td>1000 cores</td>
<td></td>
</tr>
<tr>
<td>$p = 2^{1024} - 1093337$</td>
<td>≈ 6 months</td>
<td>Internet Scanning</td>
</tr>
<tr>
<td></td>
<td>2000 cores</td>
<td>125 TLS hosts</td>
</tr>
</tbody>
</table>
3. Are there SNFS primes in the wild?

Poorly-hidden: no.

- We did a somewhat perfunctory search for primes with $g_1 = 1$ and 10-digit f_i. Did not find any.
Provenance of Diffie-Hellman groups in the wild

- Verifiably Random
 - Java JDK primes have published seeds
- “Nothing up my sleeve”
 - Oakley groups - generated from digits of π
 - TLS 1.3 groups - generated from digits of e
Provenance of Diffie-Hellman groups in the wild

- **Verifiably Random**
 - Java JDK primes have published seeds
- **“Nothing up my sleeve”**
 - Oakley groups - generated from digits of π
 - TLS 1.3 groups - generated from digits of e

- **No record of provenance**
 - Groups published in RFC 5114
 - Groups included with Apache webserver
2. Additional Diffie-Hellman Groups

2.1. 1024-bit MODP Group with 160-bit Prime Order Subgroup

The hexadecimal value of the prime is:

\[p = B10B8F96 \ A080E01D \ DE92DE5E \ AE5D54EC \ 52C99FBC \ FB06A3C6 \ 9A6A9DCA \ 52D23B61 \ 6073E286 \ 75A23D18 \ 9838EF1E \ 2EE652C0 \ 13ECB4AE \ A9061123 \ 24975C3C \ D49B83BF \ ACCBDD7D \ 90C4BD70 \ 98488E9C \ 219A7372 \ 4EFFDF6FA \ E5644738 \ FAA31A4F \ F55BCC0 \ A151AF5F \ 0DC8B4BD \ 45BF37DF \ 365C1A65 \ E68CFDA7 \ 6D4DA708 \ DF1FB2BC \ 2E4A4371 \]

The hexadecimal value of the generator is:

\[g = A4D1CBD5 \ C3FD3412 \ 6765A442 \ EFB99905 \ F8104DD2 \ 58AC507F \ D6406CF8 \ 14266D31 \ 266FEA1E \ 5C41564B \ 777E690F \ 5504F213 \ 160217B4 \ B01B886A \ 5E91547F \ 9E2749F4 \ D7FB7D3 \ B9A92EE1 \ 9090D222 \ 63FB0A76 \ A6A24C08 \ 7A091F53 \ 1DBF0A01 \ 69B6A28A \ D662A4D1 \ 8E73AFA3 \ 2D77D59 \ 18D08BC8 \ 858F4DCE \ F97C2A24 \ 855E6EEB \ 22B3B2E5 \]

The generator generates a prime-order subgroup of size:

\[q = F518AA87 \ 81A8DF27 \ 8ABA4E7D \ 64B7CB9D \ 49462353 \]
Provenance of Diffie-Hellman groups in RFC 5114

“After some searching through our records and old source files, NIST cannot determine specifically how these Diffie-Hellman domain parameters were generated, although we think that they were generated internally at NIST.

…it would be appropriate for the IETF to remove or deprecate any inclusion of these groups in an RFC.” — Tim Polk, November 2016
What about 2048 bits?

Gordon’s trapdoor construction would work.

- Modern parameters: 2048-bit p, 224 or 256-bit q
 - Can choose $\deg f = 7$, optimal for NFS.

- Estimate 2048-bit SNFS is roughly equivalent to 1340-bit GNFS
 - ($\approx 7,000,000,000$ core years)
Design considerations for future algorithms

- Eliminate potential for backdoored parameters.
 - Even if Dual-EC was never backdoored by the NSA, someone exploited the potential backdoor against Juniper.

- If verifiable randomness is necessary, it should not be considered optional.

- Account for precomputation in analysis.