A kilobit hidden SNFS discrete log

computation

Joshua Fried, Pierrick Gaudry, Nadia Heninger,
Emmanuel Thomé

May 1, 2017

Textbook (Finite-Field) Diffie-Hellman Key Exchange

[Diffie Hellman 1976]

sk

g < p group generator (often 2 or 5)

g@ mod p

~

gP mod p

<
h)

N e

g mod p g% mod p

Images from XKCD

Where do group parameters come from?

» Protocol Specifications (RFCs)
» TLS 1.3, SSH, IPsec (IKE)

» Distributed in implementations
» Apache webserver, OpenSSH server, Java JDK

» Generated by users
» Possible in SSH and TLS prior to version 1.3
» 80% of TLS hosts use 1 of 10 primes

Our work

1. What does backdooring a prime look like?
2. lIs it detectable?
3. What sort of computation would be required today?

4. Impact for currently deployed crypto

Number field sieve discrete log algorithm

[Gordon], [Joux, Lercier], [Semaev]

polynomial sieving linear
selection algebra

B

1. Polynomial selection: Find a good choice of number field K.
2. Relation collection: Factor elements over Ok and over Z.

3. Linear algebra: Once there are enough relations, solve for logs of
small elements.

4. Individual log: “Descent” Try to write target t as sum of logs in
known database.

How long does it take to compute discrete logs?

(For the “general” number field sieve)

polynomial sieving linear | :
selection algebra : | Y, 8
|

Answer 1:

L,(1/3,1.923) = exp(1.923(log p)*/3(log log p)*/?)

How long does it take to compute discrete logs?

(For the “general” number field sieve)
polynomial sieving linear :

selection algebra L Y, 8
|

N e

precomputation individual log

descent

Answer 1:

L,(1/3,1.923) = exp(1.923(log p)*/3(log log p)*/?) L,(1/3,1.232)

How long does it take to compute discrete logs?

(For the “general” number field sieve)

polynomial sieving linear :
selection algebra L Y, 8
|

A

precomputation individual log

descent

Answer 2:

Precomputation Individual Log
core-years core-time
RSA-512 [Cavallar et al. 1999] 1 —
DH-512 [Adrian et al. 2015] 10 10 mins
RSA-768 [Kleinjung et al. 2009] 1,000 —
DH-768 [Kleinjung et al. 2016] 5,000 2days

RSA-1024 (estimate) 1,000,000

DH-1024 (estimate) ~210,000,000 30 days

Polynomial selection for the number field sieve

“Easy” Polynomial Selection

1. Choose m ~ p/®. Write p in base m:
_ 6 5
p=fem’+fsm>+---+fo
2. Then a suitable pair of polynomials for NFS is
f(x)=fex®+--- +1f gx)=x—m
f,g share common root modp.
3. Expect |fi| &~ |p/9|.

4. Size of numbers to be sieved depends on |f;|, m. Smaller size
— higher probability of being B-smooth — less work to find
each relation.

The “special’ number field sieve

Even easier polynomial selection!

1. Consider Mersenne number n = 2k — 1.

2. Assume 6 | k. Let m = 2/ so we have f(x) = x® — 1 and
g(x)=x—m.

Impact for discrete log:

GNFS SNFS

core-years core-years

Asymptotically L,(1/3,1.923) L,(1/3,1.526)
DH-768 5,000 60

DH-1024 ~210,000,000 400

Flashback to the crypto wars of the 1990s

» 1991: NIST proposed draft standard for discrete log-based
Digital Signature Algorithm (DSA)

Params:

» p 512-bit prime modulus
» g generates subgroup of 160-bit prime order g

» A. Lenstra: Primes can be trapdoored if they include hidden
SNFS structure.

How to trapdoor a DSA prime.
[Gordon 92]

Want to construct primes p, g such that ¢ | p — 1 and

F(x)=fox’+---+f, gx)=gx+e

such that p | Res(f, g).

Slow algorithm:

1.

Choose random f, g.

2. Check if p = Res(f, g) prime.
3.
4. Repeat until p — 1 has 160-bit prime factor.

Factor p — 1 with ECM.

How to trapdoor a DSA prime.
[Gordon 92]

Want to construct primes p, g such that g | p— 1 and

f(x)=fox’+---+f, gx)=gx+e

such that p | Res(f, g).

Better algorithm:

1.

AR

Choose f(x), g, g-

Want g | Res(f(x), g1x — go) — 1.

Compute G(g1) = Res(f(x),g1x — go) — 1.
Compute root G(r) =0 mod q; g1 = r + cq.
Repeat until Res(f(x), gix — go) prime.

Detecting the trapdoor

» “Easy” if g(x) = x + go or similar.
1. Brute force leading coefficient fy of f.

2. Search values of gy near (p/fy)Y/9.
3. Use LLL to search for other small coefficients of f.

» If g(x) = g1x + go don't know a way that doesn’t require
brute forcing coefficients of f or g.

» Open Problem: Given p = Res(f, g1x + go) and f has small
coefficients, find f, g.

Crafting the trapdoor

» 1992-era parameters: 512-bit p, 160-bit g

» Forces deg f = 3; suboptimal for NFS.
» f chosen from small set so not well hidden.

Crafting the trapdoor

» 1992-era parameters: 512-bit p, 160-bit g

» Forces deg f = 3; suboptimal for NFS.
» f chosen from small set so not well hidden.

“... this trap only makes sense for primes up to [600 bits].
Furthermore, this kind of trap can be detected, although this
requires more work than an average user will be able to invest.”
—A. Lenstra, Eurocrypt 1992 Panel on DSA

» DSA standard: optional “verifiably random” prime generation.

Crafting the trapdoor in the modern era

Gordon's trapdoor construction remains best construction.

» Modern parameters: 1024-bit p, 160-bit g
» Can choose deg f = 6, optimal for NFS.
Choose |f;| ~ 2.
Brute force search to find f ~ 28 ~ cost of Pollard rho for q.
Don't know of better way to detect trapdoor.

v vy

Exploiting the trapdoor in the modern era

-

. Generated target prime in 12 core-hours.

= 16332398724044367910140207009304915503098943980691751
91735800707915692277289328503584988628543993514237336
97660534800194492724828721314980248259450358792069235
99182658894420044068709413666950634909369176890244055
53414932372965552542473794227022215159298376298136008
12082006124038089463610239236157651252180491

= 1120320311183071261988433674300182306029096710473 ,

= 1155x° + 1090 x® + 440 x* + 531 x3 — 348 x> — 223 x — 1385
= 567162312818120432489991568785626986771201829237408 x
—663612177378148694314176730818181556491705934826717 .

Exploiting the trapdoor in the modern era

2. Run discrete log computation mod p.

sieving linear algebra

sequence generator solution

individual log

cores ~3000 2056 576 2056
CPU time (core) 240 years 123 years 13 years 9 years

calendar time 1 month 1 month

500-352
10 days

80 minutes

; n.WNW‘\IM!N’J = =2
N / >/////.,/.#// (./ﬂ/ﬂ//é

INRIA Catrel

Exploiting the trapdoor in the modern era

3. Are there SNFS primes in the wild?

Exploiting the trapdoor in the modern era

3. Are there SNFS primes in the wild?

Non-hidden: yes.

NFS time

Prime # cores Source

p = 2512 38117 215 minutes Internet Scanning
1288 cores 121 TLS hosts

p =278 _228 1 1027679 23 days
1000 cores

p = 2%02% _ 1093337 ~ 6 months
2000 cores

LibTomCrypt

Internet Scanning
125 TLS hosts

Exploiting the trapdoor in the modern era

3. Are there SNFS primes in the wild?

Poorly-hidden: no.

» We did a somewhat perfunctory search for primes with g3 =1
and 10-digit f;. Did not find any.

Provenance of Diffie-Hellman groups in the wild

» Verifiably Random
» Java JDK primes have published seeds

> “Nothing up my sleeve”
» Oakley groups - generated from digits of 7
» TLS 1.3 groups - generated from digits of e

Provenance of Diffie-Hellman groups in the wild

» Verifiably Random
» Java JDK primes have published seeds

> “Nothing up my sleeve”
» Oakley groups - generated from digits of 7
» TLS 1.3 groups - generated from digits of e

» No record of provenance

» Groups published in RFC 5114
» Groups included with Apache webserver

[Docs) [txt|pdf] [draft-lepinski-dh...] [Diff1] [Diff2]

INFORMATIONAL
Network Working Group M. Lepinski
Request for Comments: 5114 S. Eent
Category: Informational BBN Technologies

January 2008

Additional Diffie-Hellman Groups for Use with IETF Standards

2. Additional Diffie-Hellman Groups

This secticn contains the specification for eight groups for use in

IKE, TLS, SSH, etc. There are three standard prime modulus groups

and five elliptic curve groups. All groups were taken from .
publications of the National Institute of Standards and Technology, Supported by
specifically [DSS] and [NISTBO056A). Test data for each group is

provided in Appendix A. » 900K (23%) HTTPS

2.1. 1024-bit MODP Group with 160-bit Prime Order Subgroup
hosts
The hexadecimal value of the prime is:
0
p = BlOBBF96 AOBOE0LD DES2DESE AESDS4EC 52C99FBC FBOEAICE » 340K (13 A) IPsec
SA6A9DCA 52D23B61 6073E2B6 75A23D18 9B3BEF1E 2EE652C0
13ECB4AE A9061123 24975C3C D49BB3BE ACCBDD7D 90C4BDT0 hosts

9B4BBEYC 219A7372 4EFFD6FA E5644738 FAA31A4F F55BCCCO
Al51AFSF ODCBB4BD 45BF37DF 365C1A65 EGBCFDAT7 6D4DAT0E
DF1FB2BC 2E4A4371

The hexadecimal value of the generator is:

g = A4DICEDS C3FD3412 6765A442 EFB%9905 FB8104DD2 5BACS07F
D6406CFF 14266D31 266FEALE 5C41564B 777E690F 5504F213
16021784 BO1BEB6A 5E91547F 9E2749F4 DJFBDT7D3 BSAY2EEL
909D0D22 63FBOATE AGAZ4COB TAD91F53 1DBFOAOL 69BEAZBA
D662A4D1 BE73AFA3 2D779D59% 18DOBBCB B5BF4DCE FY97C2A24
BSSEGEEB 22B3B2ES

The generator generates a prime-order subgroup of size:

g = F51BAAB7 B1ABDF27 BABA4ETD 64BTCBYD 49462353

Provenance of Diffie-Hellman groups in RFC 5114

“After some searching through our records and old source files,
NIST cannot determine specifically how these Diffie-Hellman
domain parameters were generated, although we think that they
were generated internally at NIST.

...it would be appropriate for the IETF to remove or deprecate any
inclusion of these groups in an RFC.” — Tim Polk, November 2016

What about 2048 bits?

Gordon's trapdoor construction would work.

» Modern parameters: 2048-bit p, 224 or 256-bit q
» Can choose deg f = 7, optimal for NFS.

» Estimate 2048-bit SNFS is roughly equivalent to 1340-bit
GNFS

» (= 7,000,000,000 core years)

Design considerations for future algorithms

» Eliminate potential for backdoored parameters.
» Even if Dual-EC was never backdoored by the NSA, someone
exploited the potential backdoor against Juniper.

» If verifiable randomness is necessary, it should not be
considered optional.

» Account for precomputation in analysis.

A kilobit hidden SNFS discrete logarithm computation.
Joshua Fried, Pierrick Gaudry, Nadia Heninger, and Emmanuel
Thomé. https://eprint.iacr.org/2016/961.

https://eprint.iacr.org/2016/961

