
A kilobit hidden SNFS discrete log
computation

Joshua Fried, Pierrick Gaudry, Nadia Heninger,
Emmanuel Thomé

May 1, 2017

Textbook (Finite-Field) Diffie-Hellman Key Exchange
[Diffie Hellman 1976]

p a prime (so F∗
p is a cyclic group)

g < p group generator (often 2 or 5)

ga mod p

gb mod p

gab mod pgab mod p

Images from XKCD

Where do group parameters come from?

I Protocol Specifications (RFCs)
I TLS 1.3, SSH, IPsec (IKE)

II Distributed in implementations
I Apache webserver, OpenSSH server, Java JDK

II Generated by users
I Possible in SSH and TLS prior to version 1.3
I 80% of TLS hosts use 1 of 10 primes

Our work

1. What does backdooring a prime look like?

2. Is it detectable?

3. What sort of computation would be required today?

4. Impact for currently deployed crypto

Number field sieve discrete log algorithm
[Gordon], [Joux, Lercier], [Semaev]

p

polynomial
selection

sieving linear
algebra

log db

y , g descent

a

1. Polynomial selection: Find a good choice of number field K .

2. Relation collection: Factor elements over OK and over Z.

3. Linear algebra: Once there are enough relations, solve for logs of
small elements.

4. Individual log: “Descent” Try to write target t as sum of logs in
known database.

How long does it take to compute discrete logs?
(For the “general” number field sieve)

p

polynomial
selection

sieving linear
algebra

log db

precomputation

y , g descent

a

individual log

Answer 1:

Lp(1/3, 1.923) = exp(1.923(log p)1/3(log log p)2/3)

How long does it take to compute discrete logs?
(For the “general” number field sieve)

p

polynomial
selection

sieving linear
algebra

log db

precomputation

y , g descent

a

individual log

Answer 1:

Lp(1/3, 1.923) = exp(1.923(log p)1/3(log log p)2/3) Lp(1/3, 1.232)

How long does it take to compute discrete logs?
(For the “general” number field sieve)

p

polynomial
selection

sieving linear
algebra

log db

precomputation

y , g descent

a

individual log

Answer 2:

Precomputation Individual Log
core-years core-time

RSA-512 [Cavallar et al. 1999] 1 —
DH-512 [Adrian et al. 2015] 10 10 mins

RSA-768 [Kleinjung et al. 2009] 1,000 —
DH-768 [Kleinjung et al. 2016] 5,000 2 days

RSA-1024 (estimate) 1,000,000 —
DH-1024 (estimate) ≈10,000,000 30 days

Polynomial selection for the number field sieve

“Easy” Polynomial Selection

1. Choose m ≈ p1/6. Write p in base m:

p = f6m
6 + f5m

5 + · · ·+ f0

2. Then a suitable pair of polynomials for NFS is

f (x) = f6x
6 + · · ·+ f0 g(x) = x −m

f ,g share common root modp.

3. Expect |fi | ≈ |p1/6|.

4. Size of numbers to be sieved depends on |fi |,m. Smaller size
→ higher probability of being B-smooth → less work to find
each relation.

The “special” number field sieve

Even easier polynomial selection!

1. Consider Mersenne number n = 2k − 1.

2. Assume 6 | k . Let m = 2k/6 so we have f (x) = x6 − 1 and
g(x) = x −m.

Impact for discrete log:

GNFS SNFS
core-years core-years

Asymptotically Lp(1/3, 1.923) Lp(1/3, 1.526)

DH-768 5,000 60

DH-1024 ≈10,000,000 400

Flashback to the crypto wars of the 1990s

I 1991: NIST proposed draft standard for discrete log-based
Digital Signature Algorithm (DSA)

Params:
I p 512-bit prime modulus
I g generates subgroup of 160-bit prime order q

I A. Lenstra: Primes can be trapdoored if they include hidden
SNFS structure.

How to trapdoor a DSA prime.
[Gordon 92]

Want to construct primes p, q such that q | p − 1 and

f (x) = f6x
6 + · · ·+ f0, g(x) = g1x + g0

such that p | Res(f, g).

Slow algorithm:

1. Choose random f , g .

2. Check if p = Res(f, g) prime.

3. Factor p − 1 with ECM.

4. Repeat until p − 1 has 160-bit prime factor.

How to trapdoor a DSA prime.
[Gordon 92]

Want to construct primes p, q such that q | p − 1 and

f (x) = f6x
6 + · · ·+ f0, g(x) = g1x + g0

such that p | Res(f, g).

Better algorithm:

1. Choose f (x), q, g0.

2. Want q | Res(f (x), g1x − g0)− 1.

3. Compute G (g1) = Res(f (x), g1x − g0)− 1.

4. Compute root G (r) ≡ 0 mod q; g1 = r + cq.

5. Repeat until Res(f (x), g1x − g0) prime.

Detecting the trapdoor

I “Easy” if g(x) = x + g0 or similar.

1. Brute force leading coefficient fd of f .
2. Search values of g0 near (p/fd)1/d .
3. Use LLL to search for other small coefficients of f .

I If g(x) = g1x + g0 don’t know a way that doesn’t require
brute forcing coefficients of f or g .

I Open Problem: Given p = Res(f , g1x + g0) and f has small
coefficients, find f , g .

Crafting the trapdoor

I 1992-era parameters: 512-bit p, 160-bit q
I Forces deg f = 3; suboptimal for NFS.
I f chosen from small set so not well hidden.

“... this trap only makes sense for primes up to [600 bits].
Furthermore, this kind of trap can be detected, although this
requires more work than an average user will be able to invest.”
—A. Lenstra, Eurocrypt 1992 Panel on DSA

I DSA standard: optional “verifiably random” prime generation.

Crafting the trapdoor

I 1992-era parameters: 512-bit p, 160-bit q
I Forces deg f = 3; suboptimal for NFS.
I f chosen from small set so not well hidden.

“... this trap only makes sense for primes up to [600 bits].
Furthermore, this kind of trap can be detected, although this
requires more work than an average user will be able to invest.”
—A. Lenstra, Eurocrypt 1992 Panel on DSA

I DSA standard: optional “verifiably random” prime generation.

Crafting the trapdoor in the modern era

Gordon’s trapdoor construction remains best construction.

I Modern parameters: 1024-bit p, 160-bit q
I Can choose deg f = 6, optimal for NFS.
I Choose |fi | ≈ 211.
I Brute force search to find f ≈ 280 ≈ cost of Pollard rho for q.
I Don’t know of better way to detect trapdoor.

Exploiting the trapdoor in the modern era

1. Generated target prime in 12 core-hours.

p = 16332398724044367910140207009304915503098943980691751
91735800707915692277289328503584988628543993514237336
97660534800194492724828721314980248259450358792069235
99182658894420044068709413666950634909369176890244055
53414932372965552542473794227022215159298376298136008
12082006124038089463610239236157651252180491

q = 1120320311183071261988433674300182306029096710473 ,

f = 1155 x6 + 1090 x5 + 440 x4 + 531 x3 − 348 x2 − 223 x − 1385
g = 567162312818120432489991568785626986771201829237408 x

−663612177378148694314176730818181556491705934826717 .

Exploiting the trapdoor in the modern era

2. Run discrete log computation mod p.

sieving linear algebra individual log

sequence generator solution

cores ≈3000 2056 576 2056 500–352

CPU time (core) 240 years 123 years 13 years 9 years 10 days

calendar time 1 month 1 month 80 minutes

INRIA Catrel UPenn

Exploiting the trapdoor in the modern era

3. Are there SNFS primes in the wild?

Exploiting the trapdoor in the modern era

3. Are there SNFS primes in the wild?

Non-hidden: yes.

NFS time
Prime # cores Source

p = 2512 − 38117 215 minutes Internet Scanning
1288 cores 121 TLS hosts

p = 2784 − 228 + 1027679 23 days LibTomCrypt
1000 cores

p = 21024 − 1093337 ≈ 6 months Internet Scanning
2000 cores 125 TLS hosts

Exploiting the trapdoor in the modern era

3. Are there SNFS primes in the wild?

Poorly-hidden: no.

I We did a somewhat perfunctory search for primes with g1 = 1
and 10-digit fi . Did not find any.

Provenance of Diffie-Hellman groups in the wild

I Verifiably Random
I Java JDK primes have published seeds

I “Nothing up my sleeve”
I Oakley groups - generated from digits of π
I TLS 1.3 groups - generated from digits of e

I No record of provenance
I Groups published in RFC 5114
I Groups included with Apache webserver

Provenance of Diffie-Hellman groups in the wild

I Verifiably Random
I Java JDK primes have published seeds

I “Nothing up my sleeve”
I Oakley groups - generated from digits of π
I TLS 1.3 groups - generated from digits of e

I No record of provenance
I Groups published in RFC 5114
I Groups included with Apache webserver

Supported by:

I 900K (2.3%) HTTPS
hosts

I 340K (13%) IPsec
hosts

Provenance of Diffie-Hellman groups in RFC 5114

“After some searching through our records and old source files,
NIST cannot determine specifically how these Diffie-Hellman
domain parameters were generated, although we think that they
were generated internally at NIST.

. . . it would be appropriate for the IETF to remove or deprecate any
inclusion of these groups in an RFC.” — Tim Polk, November 2016

What about 2048 bits?

Gordon’s trapdoor construction would work.

I Modern parameters: 2048-bit p, 224 or 256-bit q
I Can choose deg f = 7, optimal for NFS.

I Estimate 2048-bit SNFS is roughly equivalent to 1340-bit
GNFS

I (≈ 7,000,000,000 core years)

Design considerations for future algorithms

I Eliminate potential for backdoored parameters.
I Even if Dual-EC was never backdoored by the NSA, someone

exploited the potential backdoor against Juniper.

I If verifiable randomness is necessary, it should not be
considered optional.

I Account for precomputation in analysis.

A kilobit hidden SNFS discrete logarithm computation.
Joshua Fried, Pierrick Gaudry, Nadia Heninger, and Emmanuel
Thomé. https://eprint.iacr.org/2016/961.

https://eprint.iacr.org/2016/961

