The Multi-User Security of Double Encryption

<u>Viet Tung Hoang</u>

Florida State University

Stefano Tessaro UC Santa Barbara

EUROCRYPT 2017 May 3, 2017

Double Encryption

$E: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$

Double Encryption

$E: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$

Conventional wisdom: Double Encryption adds no security

Double Encryption

$E: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$

Conventional wisdom: Double Encryption adds no security

Today: Double Encryption adds **some** security, if we look at a broader angle

Conventional Security Definition

$$\mathbf{Adv}_{\Pi[E]}^{\operatorname{cca}}(A) = \Pr[\operatorname{Real}^{A}[E] \Rightarrow 1] - \Pr[\operatorname{Ideal}^{A}[E] \Rightarrow 1]$$

$$\mathbf{Adv}_{\Pi[E]}^{\operatorname{cca}}(q) = \max_{A \text{ of } q \text{ queries}} \mathbf{Adv}_{\Pi[E]}^{\operatorname{cca}}(A)$$

Conventional Security Definition

Multi-user (mu) Security

- The conventional notion consider just single-user (su) security
- -In practice, adversary attacks **multiple** users, **adaptively** distributing its resources

Multi-user (mu) Security

- The conventional notion consider just single-user (su) security
- -In practice, adversary attacks **multiple** users, **adaptively** distributing its resources

-Mu security can be implicitly obtained via hybrid arguments:

$$\mathbf{Adv}_{\Pi[E]}^{\mathrm{mu-cca}}(q) \le \#\mathrm{users} \cdot \mathbf{Adv}_{\Pi[E]}^{\mathrm{cca}}(q)$$

Double Encryption Improves Mu Security

Claim: Double Encryption improves mu security

Double Encryption Improves Mu Security

Claim: Double Encryption improves mu security

-AES has only 64-bit security in mu setting due to key-collision attack. [Biham 02]

Choose random keys K_1, K_2, \ldots, K_p

1	K_1	K_2	• • •	K_p
A	$E_{K_1}(0^n)$	$E_{K_2}(0^n)$		$E_{K_p}(0^n)$
	User #1	User #2	• • •	User #q
	$\operatorname{Enc}(1,0^n)$	$\operatorname{Enc}(2,0^n)$		$\operatorname{Enc}(q,0^n)$

Check for matching entries between two tables to recover some user's key

Double Encryption Improves Mu Security

Claim: Double Encryption improves mu security

-AES has only 64-bit security in mu setting due to key-collision attack. [Biham 02]

Choose random keys K_1, K_2, \ldots, K_p

Check for matching entries between two tables to recover some user's key

-Today: Mu security of DE(AES) ≈ Su security of AES

128-bit security

History of Mu Analyses on SE/DE

k: key length, n: block len	Adv vanishes when $q \approx$	
Construction	Advantage	Security level
SE: matching attack of hybrid argument by [Biham 02]	$\frac{q^2}{2^k}$	$2^{k/2}$
DE: hybrid argument on [ABDV98] bound	$\frac{q^3}{2^{2k}}$	$2^{2k/3}$
DE: dream bound	$\frac{q}{2^k}$	2^k

Goals and Results

-Give a **generic technique** for bounding information-theoretic mu security.

+ Our method can handle any indistinguishability games (PRF, AE, blockcipher), and any ideal primitive (random oracle, ideal cipher, ideal permutation).

Goals and Results

-Give a **generic technique** for bounding information-theoretic mu security.

+ Our method can handle any indistinguishability games (PRF, AE, blockcipher), and any ideal primitive (random oracle, ideal cipher, ideal permutation).

-Showcase the method via Double Encryption

Advantage	Security level			
$\frac{6qB^2 + 222Bq^2}{2^{2k}}$	$2^k/n$ if $n \ge k$			
$B = 5 \max\{n + k/2, 2q/2^n\}$				

Results

Visualization of the mu and su bounds of Single Encryption (SE) and Double Encryption (DE) on AES parameters

Almost proximity: very general, but can be overly complex in some setting

Generalize the pointwise proximity technique of [Hoang, Tessaro 2016]

- Bound the distinguishing advantage of two randomized systems \mathbf{S}_0 and \mathbf{S}_1

X may encode (+, x) or (-, y), and Z may encode (+, K, z) or (-, K, z)

Assume that q CONS queries of data complexity σ invoke σt primitive queries

$$\mathbf{Adv}_{\mathbf{S}_0,\mathbf{S}_1}(A) \le \sum_{\tau} \mathbf{p}_{\mathbf{S}_0}(\tau) \cdot \max\left\{0, 1 - \frac{\mathbf{p}_{\mathbf{S}_1}(\tau)}{\mathbf{p}_{\mathbf{S}_0}(\tau)}\right\}$$

- Classify mu transcripts by "nice" and "not nice"

$$\mathbf{Adv}_{\mathbf{S}_0,\mathbf{S}_1}(A) \le \sum_{\tau} \mathbf{p}_{\mathbf{S}_0}(\tau) \cdot \max\left\{0, 1 - \frac{\mathbf{p}_{\mathbf{S}_1}(\tau)}{\mathbf{p}_{\mathbf{S}_0}(\tau)}\right\}$$

- Classify mu transcripts by "nice" and "not nice"

$$\mathbf{Adv}_{\mathbf{S}_{0},\mathbf{S}_{1}}(A) \leq \sum_{\tau} \mathbf{p}_{\mathbf{S}_{0}}(\tau) \cdot \max\left\{0,1-\frac{\mathbf{p}_{\mathbf{S}_{1}}(\tau)}{\mathbf{p}_{\mathbf{S}_{0}}(\tau)}\right\}$$

- Classify mu transcripts by "nice" and "not nice"

Goal: bound Area by analyses on **su** good transcripts

Totally, $\sum_{i} q_i = q \text{ CONS}$ queries of data complexity $\sum_{i} \sigma_i \leq \sigma$ and p PRIM queries

Suppose that for any su adversary *B* of parameters p, q, σ $\mathbf{Adv}_{\mathbf{S}_0, \mathbf{S}_1}(B) \leq \epsilon(p, q, \sigma) + \epsilon'(p, q, \sigma)$

Hybrid argument: $\operatorname{Adv}_{\mathbf{S}_0,\mathbf{S}_1}(A) \leq \sum_i \epsilon(p + \sigma t, q_i, \sigma_i) + \epsilon'(p + \sigma t, q_i, \sigma_i)$ $\leq \epsilon(p + \sigma t, q, \sigma) + q \cdot \epsilon'(p + \sigma t, q, \sigma)$

Totally, $\sum_{i} q_i = q \text{ CONS}$ queries of data complexity $\sum_{i} \sigma_i \leq \sigma$ and p PRIM queries

Suppose that for any su adversary ${\it B}$ of parameters p,q,σ

$$\mathbf{Adv}_{\mathbf{S}_0,\mathbf{S}_1}(B) \le \epsilon(p,q,\sigma) + \epsilon'(p,q,\sigma)$$

Accounting for simulated queries

Hybrid argument: $\operatorname{Adv}_{\mathbf{S}_0,\mathbf{S}_1}(A) \leq \sum_i \epsilon(p + \sigma t, q_i, \sigma_i) + \epsilon'(p + \sigma t, q_i, \sigma_i)$ $\leq \epsilon(p + \sigma t, q, \sigma) + q \cdot \epsilon'(p + \sigma t, q, \sigma)$

Totally, $\sum_{i} q_i = q \text{ CONS}$ queries of data complexity $\sum_{i} \sigma_i \leq \sigma$ and p PRIM queries

Suppose that for any su adversary B of parameters p, q, σ
 $\mathbf{Adv}_{\mathbf{S}_0, \mathbf{S}_1}(B) \leq \epsilon(p, q, \sigma) + \epsilon'(p, q, \sigma)$ Accounting
for simulated
queriesHybrid argument: $\mathbf{Adv}_{\mathbf{S}_0, \mathbf{S}_1}(A) \leq \sum_i \epsilon(p + \sigma t, q_i, \sigma_i) + \epsilon'(p + \sigma t, q_i, \sigma_i)$ $\epsilon(p + \sigma t, q_i, \sigma_i) + \epsilon'(p + \sigma t, q_i, \sigma_i)$ $\mathbf{M} \leq \mathbf{S}_0 \mathbf{S}_0$

Main problem in mu security: Adversary can **adaptively** distribute the resources across multiple users

Main problem in mu security: Adversary can **adaptively** distribute the resources across multiple users

To avoid adaptivity, do hybrid argument at the **transcript level**

Main problem in mu security: Adversary can **adaptively** distribute the resources across multiple users

To avoid adaptivity, do hybrid argument at the **transcript level**

Main problem in mu security: Adversary can **adaptively** distribute the resources across multiple users

To avoid adaptivity, do hybrid argument at the **transcript level**

$$\begin{aligned} \mathbf{Adv}_{\mathbf{S}_0,\mathbf{S}_1}(A) &\leq & \mathbf{Area} \\ &\leq & \mathbf{Area} + 2\epsilon(p + \sigma t, q, \sigma) + 2q \cdot \epsilon'(p + \sigma t, q, \sigma) \end{aligned}$$

Technique for mu-CCA Security of Blockcipher

 $\begin{pmatrix} \text{Blockcipher } \Pi[E] : \mathcal{K} \times \{0,1\}^n \to \{0,1\}^n \\ \text{Ideal cipher } E : \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n \\ \text{A call to } \Pi/\Pi^{-1} \text{ makes } t \text{ calls to } E/E^{-1} \\ \text{Accounting } A\text{'s resources via } p \text{ and } q \text{ only} \end{pmatrix}$

Goal: Do only su analyses, but achieve mu results

Technique for mu-CCA Security of Blockcipher

 $\left(\begin{array}{c} \text{Blockcipher } \Pi[E] : \mathcal{K} \times \{0,1\}^n \to \{0,1\}^n \\ \text{Ideal cipher } E : \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n \\ \text{A call to } \Pi/\Pi^{-1} \text{ makes } t \text{ calls to } E/E^{-1} \\ \text{Accounting } A\text{'s resources via } p \text{ and } q \text{ only} \end{array} \right)$

Goal: Do only su analyses, but achieve mu results

Classify su transcripts into "good" and "bad"

— No restriction

Technique for mu-CCA Security of Blockcipher

 $\int_{\mathbf{Z}} \mathbf{E} \left[E \right] : \mathcal{K} \times \{0,1\}^n \to \{0,1\}^n$ Ideal cipher $E : \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ A call to Π/Π^{-1} makes t calls to E/E^{-1} Accounting A's resources via p and q only

Goal: Do only su analyses, but achieve mu results

Classify su transcripts into "good" and "bad"

— No restriction

Bound Pr[Getting a bad su transcript in \mathbf{S}_0] $\leq \epsilon^*(p,q)$

using q construction queries and p primitive queries

Giving Bound on Good Su Transcripts

Establish a bound on any good ${\bf su}$ transcript τ of parameters p and q

$$1 - \frac{\mathbf{ps}_{1}(\tau)}{\mathbf{ps}_{0}(\tau)} \leq \epsilon(p,q) + \epsilon'(p,q) + \epsilon''(p,q) \cdot \mathbf{Coll}(\tau)$$

super-additive

Giving Bound on Good Su Transcripts

Establish a bound on any good su transcript τ of parameters p and q

$$1 - \frac{\mathbf{ps}_{1}(\tau)}{\mathbf{ps}_{0}(\tau)} \leq \epsilon(p,q) + \epsilon'(p,q) + \epsilon''(p,q) \cdot \mathbf{Coll}(\tau)$$

super-additive

Transcript: (CONS, 1, (+, x), y), (PRIM, (-, K_1, u), v), ..., (PRIM, (+, K_2, u'), v')

 $\mathbf{Coll}(\tau)$: # of primitive queries that have colliding construction queries

From Su to Mu Security

Using transcript-level hybrid argument, when we move from su to mu:

$$\begin{array}{ll} \epsilon \longrightarrow 2\epsilon; \ \epsilon' \longrightarrow 2q \cdot \epsilon'; \ \epsilon^* \longrightarrow 2q \cdot \epsilon^* \\ \text{super-additivity} \end{array} & \begin{array}{l} \operatorname{Coll}(\tau) \cdot \epsilon'' \longrightarrow 40(p+qt) \max\{n, 2q/2^n\}\epsilon'' \\ \leq \min\{p, 2^{k+2}q\} \end{array}$$

From Su to Mu Security

Using transcript-level hybrid argument, when we move from su to mu:

$$\begin{array}{ccc} \epsilon \longrightarrow 2\epsilon; \ \epsilon' \longrightarrow 2q \cdot \epsilon'; \ \epsilon^* \longrightarrow 2q \cdot \epsilon^* \\ \hline & \\ \text{super-additivity} & \begin{array}{c} \operatorname{Coll}(\tau) \cdot \epsilon'' \longrightarrow 40(p+qt) \max\{n, 2q/2^n\}\epsilon'' \\ & \\ \leq \min\{p, 2^{k+2}q\} \end{array}$$

ideal world, each red arrow is unlikely to collide with more than $20 \max\{n, 2q/2^n\}$ blue ones.

From Su to Mu Security

Using transcript-level hybrid argument, when we move from su to mu:

$$\begin{array}{c} \epsilon \longrightarrow 2\epsilon; \ \epsilon' \longrightarrow 2q \cdot \epsilon'; \ \epsilon^* \longrightarrow 2q \cdot \epsilon^* \\ \text{super-additivity} & \begin{array}{c} \operatorname{Coll}(\tau) \cdot \epsilon'' \longrightarrow 40(p+qt) \max\{n, 2q/2^n\}\epsilon'' \\ \leq \min\{p, 2^{k+2}q\} \end{array}$$
Intuition: In a mu transcript obtained in the ideal world, each red arrow is unlikely to collide with more than $20 \max\{n, 2q/2^n\}$ blue ones.

Theorem: Assume the su conditions hold,

$$\mathbf{Adv}_{\Pi[E]}^{\text{mu-cca}}(q) \leq 2^{-n} + 2\epsilon + 2q \cdot (\epsilon' + \epsilon^*) + 40(p+qt) \max\{n, 2q/2^n\}\epsilon''$$

Any function takes arguments p + qt and q

Su Transcript: (CONS, 1, (+, x), y), (PRIM, (-, K_1, u), v), ..., (PRIM, (+, K_2, u'), v')

Graphical representation of the transcript

Su Transcript: (CONS, 1, (+, x), y), (PRIM, (-, K_1, u), v), ..., (PRIM, (+, K_2, u'), v')

 (J_1, J_2) : revealed keys

Trivial to distinguish when "chains" appear

 (J_1, J_2) : revealed keys

Trivial to distinguish when "chains" appear

Want: Bound Pr[extending τ in the ideal world results in chain] via Coll(τ)

 (J_1, J_2) : revealed keys

Trivial to distinguish when "chains" appear

Want: Bound Pr[extending τ in the ideal world results in chain] via Coll(τ)

Inferior bound if too many **red arrows** hit the same point.

p: #primitive queries*q*: #construction queries*k*: key length*n*: block length

Definition: A su transcript is bad if it has $B = 5 \max\{n + k/2, 2p/2^n\}$

red arrows hitting the same point.

p: #primitive queries*q*: #construction queries*k*: key length*n*: block length

Definition: A su transcript is bad if it has $B = 5 \max\{n + k/2, 2p/2^n\}$

red arrows hitting the same point.

Claim: $\Pr[\text{Getting a bad su transcript in the ideal world}] \leq \frac{1}{2^{n+k}}$

p: #primitive queries*q*: #construction queries*k*: key length*n*: block length

Definition: A su transcript is bad if it has $B = 5 \max\{n + k/2, 2p/2^n\}$ red arrows hitting the same point.

Claim:
$$\Pr[\text{Getting a bad su transcript in the ideal world}] \leq \frac{1}{2^{n+k}}$$

Probability that extending au in the ideal world results in a chain

Conclusion

- The **almost proximity** method is very powerful in obtaining strong mu security

- Contrary to conventional wisdom, Double Encryption does add some security.

+ The analysis here might be not tight: We can't find matching attacks if $n \ll k$