
Random Sampling Revisited:
Lattice Enumeration

with Discrete Pruning

Yoshinori Aono Phong Nguyễn

Summary

Motivation

Lattices, Enumeration and Pruning

Enumeration with Discrete Pruning

Motivation

Context

Needs: convincing security estimates for lattice-
based cryptosystems.

Sanity check: lattice challenges.

Context

Needs: convincing security estimates for lattice-
based cryptosystems.

Sanity check: lattice challenges.

Pruned enumeration with BKZ

What Happened?

The largest SVP records [KaTe,KaFu] use
significant power (≈RSA-768) and
a « secret » algorithm: partial description
in [FuKa15].

The main tool is an improved variant of
Schnorr’s Random Sampling [Sc03]:
not well-understood.

Our Results
Revisit Schnorr’s Random Sampling [Sc03]
and variants [BuLu06,FuKa15,DZW15].

Geometric description/generalization

First sound analysis: previously, gap
between analyses and experiments.

Optimal parameters.

Unify Random Sampling and an older
algorithm: pruned enumeration
[ScEu94,ScHo95,GNR10]

Background

What is a Lattice?

A lattice is a discrete subgroup of Rⁿ, or the
set L(b1,...,bd) of all linear combinations ∑xibi
where xi∈Z, and the bi’s are linearly
independent.

O

2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
1 1 1 1 1

Hard Lattice Problems

Input: a lattice L and an n-dim ball C.

Output: decide if L∩C is non-trivial, and
find a point when applicable.

Two settings

Approx: L∩C has many points.
Ex: SIS and ISIS.

Unique: only one non-trivial point.
Ex: BDD.

Enumeration

The simplest method to solve hard lattice
problems, going back to the 70s.

Input: a lattice L and a small ball S⊆Rn s.t.
#(L∩S) is « small ».

Output: All points in L∩S.

Drawback: running-time typically
superexponential, much larger than #(L∩S).

Enumeration Insight

Key ideas:

Projections never increase norms: if ||v||≤R,
then ||π(v)||≤R.

Using nice subspaces, π(lattice) is a
lower-dim lattice.

Enumeration is a depth-first search of a
gigantic tree, whose running time depends
on the quality of the basis.

Speeding Up
Enumeration
by Pruning

Speeding Up Enumeration

Assume that we do not need all L∩S:

Can we make enumeration faster if
we only need to find one vector?

Enumeration with Pruning
[ScEu94,ScHo95,GNR10]

Input: a lattice L, a ball S⊆Rn and a
pruning set P⊆Rn.

Output: All points in L∩S∩P=(L∩P)∩S.

Pros: Enumerating L∩S∩P can be much
faster than L∩S.

Cons: Maybe L∩S∩P ⊆ {0}.

Analyzing Pruned Enumeration
[GNR10] Framework

Enumerating L∩S∩P is deterministic, but:

The set P is randomized: it depends on a
(random) reduced basis.

The success probability is Pr(L∩S∩P ⊈ {0}).

#(L∩S∩P) « should be » ≈vol(S∩P)/covol(L)
(Gaussian heuristic).

Extreme Pruning [GNR10]

Repeat until success

Generate P by reducing a “random” basis.

Enumerate(L∩S∩P)

Can be much faster than enumeration, even
if Pr(L∩S∩P ⊈ {0}) is tiny.

Two Kinds of Pruning

Cylinder Pruning ([GNR10] generalizing
[ScEu94,ScHo95]): P is a cylinder
intersection.

Discrete Pruning (today): P is a union of
cells, in practice a union of many boxes.

Enumeration
with Discrete

Pruning

Insight

Previous analyses of Random Sampling
studied the distribution of certain lattice
points (based on encodings): tricky!

New point of view: it’s actually about
partitioning the n-dim space.

Description

Analysis

Lattice Partitions

Any partition of Rn=∪t∈T C(t) into
countably many cells s.t.:

cells are disjoint: C(i)∩C(j) = ∅

each cell can be « opened » : it
contains one and only one lattice point,
which can be found efficiently. Given a
tag t∈T, one can compute L∩C(t).

Intuitively

Enum(L∩C(t))
≃ Egg opening

Lattice Enumeration with
Discrete Pruning

Repeat until success

Select P=∪t∈U C(t) for some finite U⊆T.

Enumerate(L∩S∩P) by enumerating
all C(t)∩L where t∈U.

Each iteration takes #U poly-time operations
and succeeds with Pr(L∩S∩P⊈{0}).

We need to calculate vol(S∩P)=∑t∈Uvol(S∩C(t)).

Time(Enum(L∩P)) « linear » in #(L∩P).

Issues

Which lattice partition?

How to compute vol(S∩C(t))?
To deduce vol(S∩P)=∑t∈U vol(S∩C(t))

How to select the set U of tags?
We’d like the ones maximizing
vol(S∩C(t)): different from [Sc03,FK15].

A) Which Lattice Partitions?

Lattice partitions from fundamental domains:
T=Zn.

Lattice partitions using boxes

Babai’s partition, implicit in [DZW15]: T=Zn.

The natural partition, implicit in [FK15]: T=Nn.

Trivial Lattice Partitions

T=Zn. Cell opening: matrix/vector product.

Box Partitions in Dimension 1

Babai’s partition: T=Z

The natural partition: T=N

0 1 2-1-2

-2 -1 0 1 2

0 112 2 33 44

We can generalize with projections.

Let b1,…,bn∈Rm.

Its Gram-Schmidt Orthogonalization
is b*1,…,b*n ∈Rm:

b*1 = b1

b*i = component of bi orthogonal to
b1,…,bi-1.

Dimension n

Babai’s partition

T=Zn and C(t) = tB*+ {Σi xib*i s.t. -1/2≤xi<1/2}.

Cell opening: Babai’s algorithm [Ba86].

Babai’s partition

The « Natural » Partition

T=Nn and C((t1,…,tn)) is
{Σixib*i s.t. -(tj+1)/2<xj≤-tj/2 or tj/2<xj≤(tj+1)/2}

Cell opening: variant of Babai’s algorithm.

B) Intersection Volumes

To estimate the success probability, we
need to approximate vol(S∩C(t)) for many
t’s where:

S is a ball

C(t) is a box, or a union of symmetric
boxes.

Ball-Box Intersections

Let S=unit-ball and H=∏i [αi,βi] be a box.
Compute vol(S∩H).

We give:

Asymptotic formula for balanced boxes using the
Central Limit Theorem.

Two infinite-series formulas by generalizing [CoTi1997]
(Fourier analysis).

Practical method using [Hosono81]’s Fast Inverse
Laplace Transform.

Application: [Schnorr03] vs [FK15]

Distribution of vol(S∩C(i)):
[FK15] cells have larger intersection volume.

C) Which Cells?
The computation of vol(S∩C(t)) is too « slow »
to find the cells with largest vol(S∩C(t)).

But it is easy to find the cells C(t) minimizing
Ex∈C(t)(||x||2): orthogonal enumeration. Almost
the same cells!

The largest-volume cells

 Ex∈C(t)(||x||2)

Success probability
by Statistical Inference

The computation of vol(S∩C(t)) is too
« slow » to approximate ∑t∈Uvol(S∩C(t)).

So we ``select’’ a few thousands cells and…
extrapolate!

Errors ≤ 1% in practice.

Sound success probabilities
for discrete pruning.

Discrete Pruning vs Cylinder Pruning

Discrete pruning is faster when:

Small number of tags

High dimension

Weakly-reduced bases

Benefits

Easy to parallelize

Easy generation of parameters

Optimizing the Basis

The basis should try to maximize
vol(S∩C(t)), which may be the same as
minimizing Ex∈C(t)(||x||2). This suggests to
minimize ∑j||bj*||2.

The best bases for discrete pruning may
not be the best bases for cylinder pruning.

Conclusion

Conclusion

We unify Schnorr’s algorithms [ScEu94]
and [Sc03]: view random sampling as
some pruned enumeration, and
[GNR10]-analyze it under only the
Gaussian heuristic.

Boxes instead of cylinder intersections.

Conclusion

New tools

Computing volumes of ball/box
intersections

Approximating a sum of many volumes

« Optimal » parameters for discrete
pruning

Open Problems

Asymptotically, what is the best form
of pruning?

Adapt blockwise reduction to discrete
pruning

What is the best reduction algorithm
for discrete pruning?

Thank you for your attention...
Any question(s)?

http://eprint.iacr.org/2017/155

