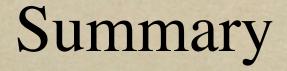
Random Sampling Revisited: Lattice Enumeration with Discrete Pruning

Yoshinori Aono

Phong Nguyễn



Motivation
Lattices, Enumeration and Pruning
Enumeration with Discrete Pruning

Motivation

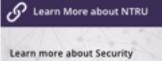
Context

- A MARK OF A SALAND

Needs: convincing security estimates for latticebased cryptosystems.

The second state of the second state of the

• Sanity check: lattice challenges.



The Store was a some

Innovation and NTRU, and how it can help your organization.

LEARN MORE

Solved Challenges

Congrats to our winners!

Challenge #1 107r0 - Nick H. Challenge #2 113r0 - Nick H. Challenge #3 131r1 - Léo D., and Phong Q. N. Challenge #4 139r1 - Léo D., and Phong Q. N. Challenge #5 149r1 - Léo D., and Phong Q. N. Challenge #6 163r1 - Léo D., and Phong Q. N. Challenge #7 173r1 - Léo D., and Phong Q. N.

TU DARMSTADT

INTRODUCTION

Welcome to the lattice challenge

Building upon a popular paper by Ajtai [1], we have constructed lattice bas solution of SVP implies a solution of SVP in all lattices of a certain smaller dim not mean that one can solve all instances simultaneously, but rather that on the worst case instances. We think these lattice bases are hand instances ar test and compare modern lattice reduction algorithms.

We show how these lattice bases were constructed and prove the existence o each of the corresponding lattices in [2]. We challenge everyone to try whater a short vector. There are two ways to enter the hall of fame:

Tackle a challenge dimension that nobody succeeded in before;

 Find an even shorter vector in one of the dimensions listed in the hall of full References

- 1. Ajtai: Generating Hard Instances of Lattice Problems, STOC 1996
- Buchmann, Lindner, Bückert: Explicit Hard Instances of the Shortest. PQCrypto 2008

HALL OF FAME

Position	Dimension	Euclidean norm	Contestant
1	825	117.64	Yeshinori Aono Phong Nguyen
2	800	103.95	Yoshinori Aono Phong Nguyen
3	775	100.14	Yuanmi Chen Phong Nguyan
4	750	87.76	Yuanmi Chen Phong Nguyen
5	725	80.65	Yuanmi Chen Phong Nguyen

HALL OF FAME

Position Di	mension	Euclidean Norm	Seed	Contestant	Solution	Algorithm
1	150	3220	0	Kenji KASHIWABARA and Tadanori TERUYA	yec	Other
2	148	3176	0	Kenji KASHIWABARA and Tadanori TERUYA	VEC	Other
3	146	3195	0	Kenji KASH3WABARA and Tadanori TERUYA	VEC	Other
4	144	3154	0	Kenji KASHIWABARA and Tadanori TERUYA	200	Other
5	142	3141	0	Kenji KASHIWABARA and Tadanori TERUYA	VEC	Other
6	140	3025	0	Kenji KASHIWABARA and Tadanori TERUYA	VEC	Other
7	130	3077	0	Kenji KASHOWABARA and Tadanori TERUYA	295	Other
	134	2976	0	Kenji KASHIWABARA and Tadanori TERUYA	VEC	Other
9	132	3012	٥	Kenji Kashiwabara and Masaharu Fukase	VEC	Other
10	130	2883	0	Yoshinori Aono and Phong Nguyen	vec	ENUH, BK
11	130	3025	0	Kenji Kashiwabara and Masaharu Pukase	vec	Other
12	128	2984	0	Kenji Kashiwabara and Masaharu fukase	vec	Other
13	128	2992	0	Kenji Kashiwabara and Masaharu Pukase	Yec	Other
14	126	2855	0	Yoshinori Aono and Phong Nguyen	vec	ENUM, BK
15	126	2897	0	Kenji KASHIWABARA and Tadanori TERUYA	yes	Other
16	126	2906	0	Yoshinori Aono	YEC	ENUH, BK
17	126	2944	0	Kenji Kashiwabara and Masaharu Fukase	VEC	Other
18	126	2969	42	Yuanmi Chen and Phong Nguyen	VEC	ENUM, BK
19	124	2004	70	Yuanmi Chen and Phong Nguyen	VEC	ENUH, BK

Context

STREET DATE

long:

21996

Addated

inori Aono to Novyen

ori Apri

hong Nouve

in the hall of f

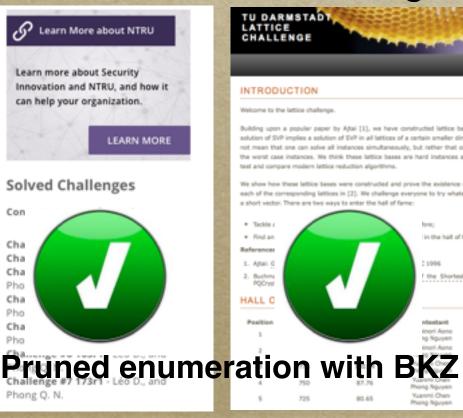
the Shortest

• Needs: convincing security estimates for latticebased cryptosystems.

The second second second

• Sanity check: lattice challenges.

A TOT WAS TO MM



HALL OF FAME

Position	Dimension	Euclidean	Seed	Contestant	Solution	Algorithm
1	150	3220	0	Kenji KASHIWABARA and Tadanori TERUYA	yec	Other
2	148	3176		Kenji KASHIWABARA and Tadanori TERUYA	YEC	Other
3	146	3195	0	Kenji KASHIWABARA and Tadanori TERUYA	vec	Other
4	144	3154	0	Kenji KASHIWABARA and Tadanori TERUYA	285	Other
5	142	3141	0	Kenji KASHIWABARA and Tadanori TERUYA	VEC	Other
6	140	3025	0	Kenji KASHIWABARA and Tadanori TERUYA	VEC	Other
7	130	3077	0	Kenji KASHIWABARA and Tadanori TERUYA	222	Other
	134	2976	0	Next Mariaters and Televel TERLYA	VIC	Other
9	132	3012	0	kase	VEC	Other
10	130	2883	•		vec	ENUM, BKZ
11	130	3025	•	kane	VEC	Other
12	128	2984	0		vec	Other
13	128	2992	•	· / ····	vec	Other
24	126	2855	•		vec	ENUM, BKZ
15	126	2897		RUYA	yes	Other
16	126	2906		Toshinori Aono	VEC	ENUH, BKZ
17	126	2944	0	Kenji Kashiwabara and Masaharu Fukase	VEC	Other
18	126	2969	42	Yuanmi Chen and Phong Nguyen	Vec	ENUM, BKZ
19	124	2004	70	Yuanmi Chen and Phong Nguyen	VEC	ENUH, BKZ

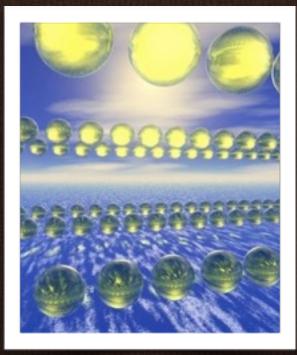
What Happened?

The largest SVP records [KaTe,KaFu] use significant power (≈RSA-768) and a « secret » algorithm: partial description in [FuKa15].

• The main tool is an improved variant of Schnorr's Random Sampling [Sc03]: not well-understood.

Our Results

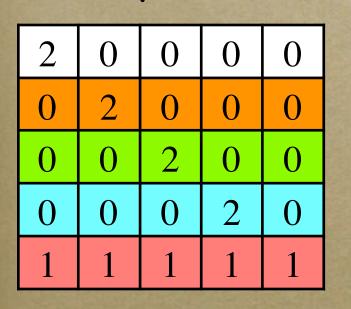
• Revisit Schnorr's Random Sampling [Sc03] and variants [BuLu06,FuKa15,DZW15]. o Geometric description/generalization • First sound analysis: previously, gap between analyses and experiments. • Optimal parameters. o Unify Random Sampling and an older algorithm: pruned enumeration [ScEu94, ScHo95, GNR10]

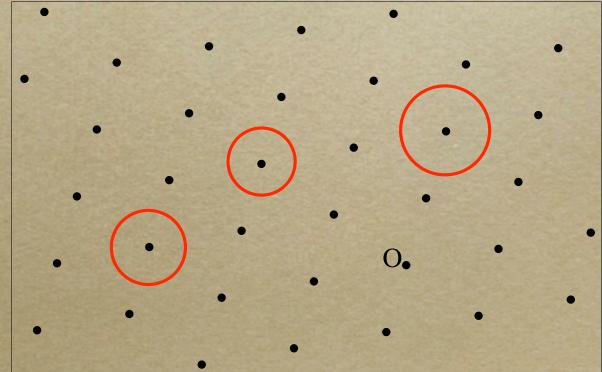


Background

What is a Lattice?

A lattice is a discrete subgroup of Rⁿ, or the set L(b₁,...,b_d) of all linear combinations Σx_ib_i where x_i∈Z, and the b_i's are linearly independent.





Hard Lattice Problems

• Input: a lattice L and an n-dim ball C.

 Output: decide if L∩C is non-trivial, and find a point when applicable.

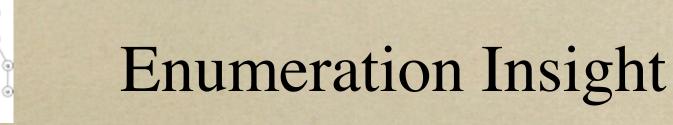
Two settings

• Approx: LnC has many points. Ex: SIS and ISIS.

O Unique: only one non-trivial point.
 Ex: BDD.

Enumeration

- The simplest method to solve hard lattice problems, going back to the 70s.
- Input: a lattice L and a small ball S⊆Rⁿ s.t.
 #(L∩S) is « small ».
- o Output: All points in L∩S.
- O Drawback: running-time typically
 superexponential, much larger than #(L∩S).



• Key ideas:

 O Projections never increase norms: if ||v||≤R, then ||π(v)||≤R.

O Using nice subspaces, π(lattice) is a lower-dim lattice.

 Enumeration is a depth-first search of a gigantic tree, whose running time depends on the quality of the basis.

Speeding Up Enumeration by Pruning

Speeding Up Enumeration

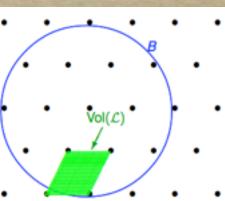
 Assume that we do not need all LnS:
 Can we make enumeration faster if we only need to find one vector?

Enumeration with Pruning [ScEu94,ScHo95,GNR10]

◦ Input: a lattice L, a ball $S \subseteq \mathbb{R}^n$ and a pruning set $P \subseteq \mathbb{R}^n$. o Output: All points in LnSnP=(LnP)nS. o Pros: Enumerating LASAP can be much faster than $L \cap S$. o Cons: Maybe $L \cap S \cap P \subseteq \{0\}$.

Analyzing Pruned Enumeration [GNR10] Framework

- Enumerating LOSOP is deterministic, but:
 - The set P is randomized: it depends on a (random) reduced basis.
 - o The success probability is $Pr(L \cap S \cap P \not\subseteq \{0\})$.
- o #(L∩S∩P) « should be » ≈vol(S∩P)/covol(L)
 (Gaussian heuristic).



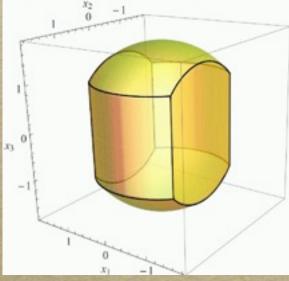
Extreme Pruning [GNR10]

Repeat until success Generate P by reducing a "random" basis. Enumerate(LnSnP) Can be much faster than enumeration, even

if $Pr(L \cap S \cap P \not\subseteq \{0\})$ is tiny.

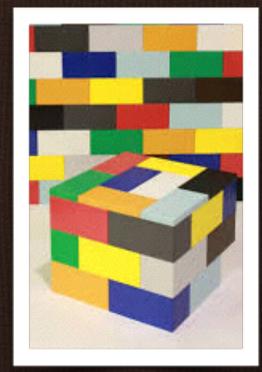
Two Kinds of Pruning

O Cylinder Pruning ([GNR10] generalizing [ScEu94,ScH095]): P is a cylinder intersection.



 Discrete Pruning (today): P is a union of cells, in practice a union of many boxes.

Enumeration with Discrete Pruning



Insight

o Previous analyses of Random Sampling studied the distribution of certain lattice points (based on encodings): tricky! • New point of view: it's actually about partitioning the n-dim space. Description Analysis

Lattice Partitions

• Any partition of $\mathbf{R}^n = \bigcup_{t \in T} C(t)$ into countably many cells s.t.: • cells are disjoint: $C(i) \cap C(j) = \emptyset$ o each cell can be « opened » : it contains one and only one lattice point, which can be found efficiently. Given a tag t \in T, one can compute L \cap C(t).

Intuitively

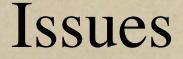
\circ Enum(L \cap C(t)) \simeq Egg opening



Lattice Enumeration with Discrete Pruning

o Repeat until success

- o Select P= $U_{t \in U}$ C(t) for some finite U⊆T.
- Enumerate(L∩S∩P) by enumerating all C(t)∩L where t∈U.
- Each iteration takes #U poly-time operations and succeeds with Pr(L∩S∩P⊈{0}).
 - We need to calculate $vol(S \cap P) = \Sigma_{t \in U} vol(S \cap C(t))$.
 - \circ Time(Enum(L \cap P)) \ll linear \gg in #(L \cap P).

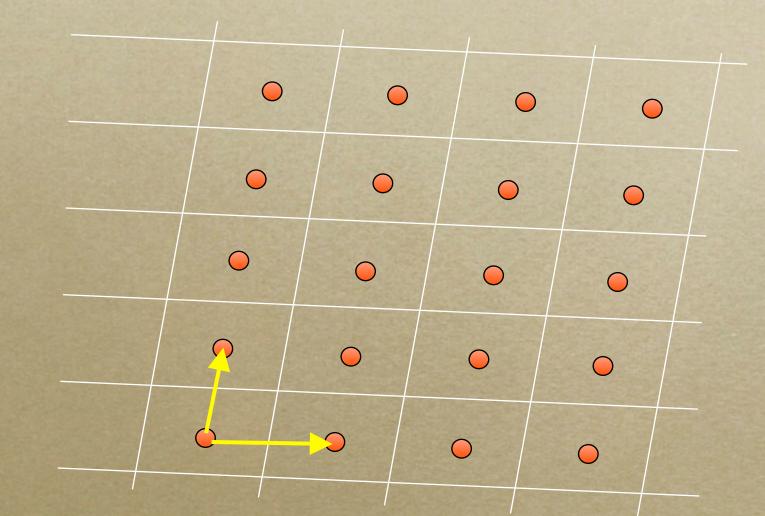


• Which lattice partition? • How to compute vol(S∩C(t))? To deduce $vol(S \cap P) = \Sigma_{t \in U} vol(S \cap C(t))$ • How to select the set U of tags? We'd like the ones maximizing vol(SnC(t)): different from [Sc03,FK15].

A) Which Lattice Partitions?

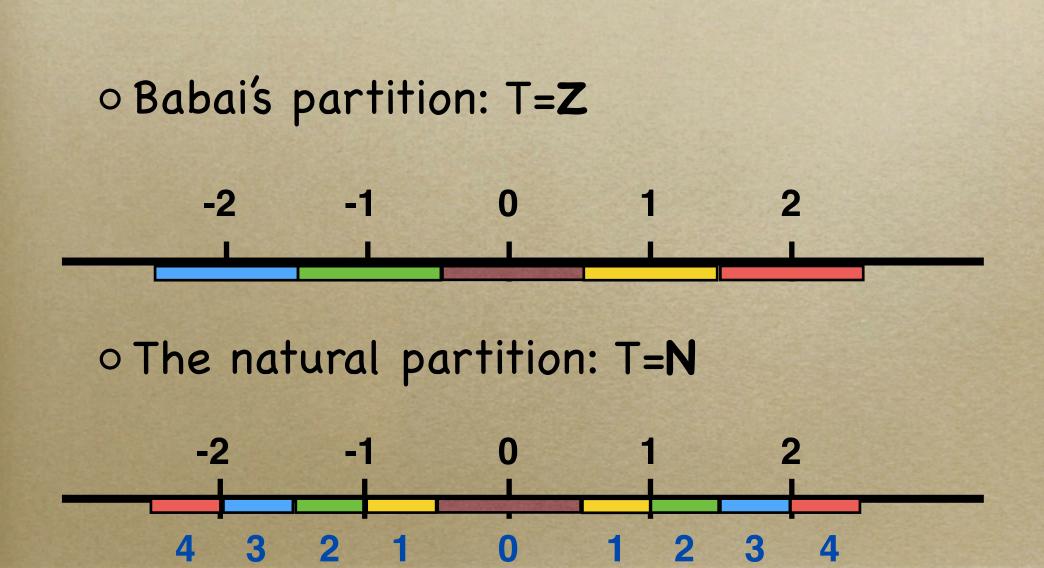
- Lattice partitions from fundamental domains: $T=Z^{n}$.
- Lattice partitions using boxes
 - Babai's partition, implicit in [DZW15]: $T=Z^n$.
 - The natural partition, implicit in [FK15]: $T=N^n$.

Trivial Lattice Partitions



• T=Zⁿ. Cell opening: matrix/vector product.

Box Partitions in Dimension 1



Dimension n

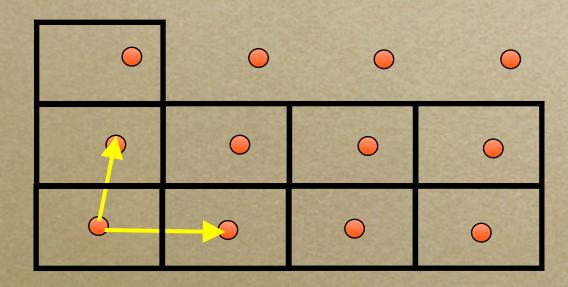
• We can generalize with projections. ◦ Let $b_1, \dots, b_n \in \mathbb{R}^m$. o Its Gram-Schmidt Orthogonalization is $b^{*_1},...,b^{*_n} \in \mathbf{R}^{m_1}$: $\circ b^{*}_{1} = b_{1}$ $o b_i^* = component of b_i orthogonal to$ b_1, \dots, b_{i-1}

Babai's partition

$\circ T = Z^n$ and $C(t) = tB^* + \{\Sigma_i x_i b^*_i \text{ s.t. } -1/2 \le x_i \le 1/2\}.$

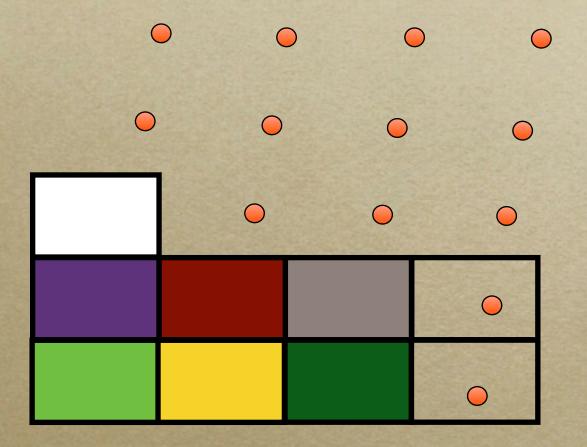
 \bigcirc

• Cell opening: Babai's algorithm [Ba86].



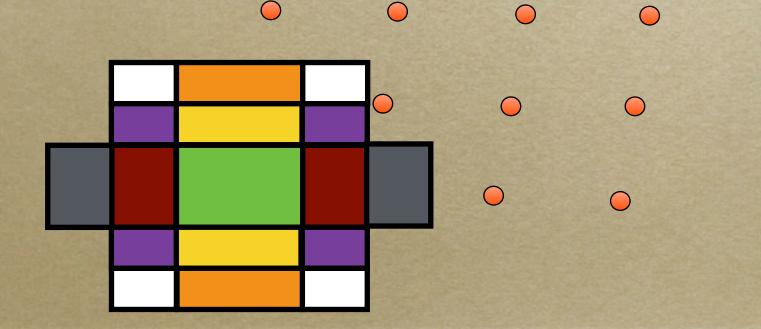
Babai's partition

tor and the minute and the station is the formation of the second provide the state of the state



The « Natural » Partition

- T=Nⁿ and C(($t_1,...,t_n$)) is { $\Sigma_i x_i b^*_i s.t. -(t_j+1)/2 < x_j \le -t_j/2 \text{ or } t_j/2 < x_j \le (t_j+1)/2$ }
- Cell opening: variant of Babai's algorithm.



B) Intersection Volumes

To estimate the success probability, we need to approximate vol(S∩C(t)) for many t's where:

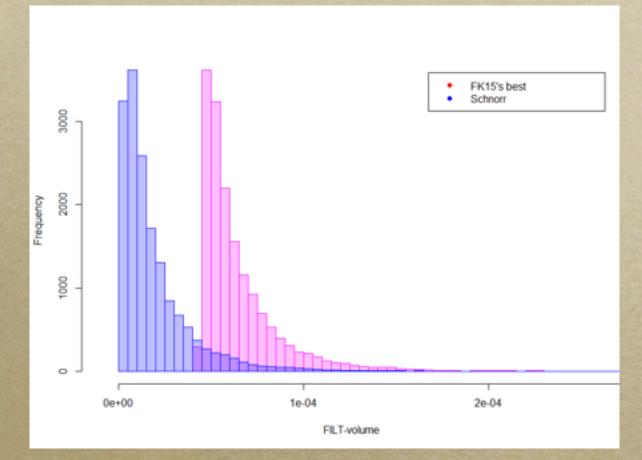
o S is a ball

 C(t) is a box, or a union of symmetric boxes.

Ball-Box Intersections

- Let S=unit-ball and H= $\Pi_i [\alpha_i, \beta_i]$ be a box.
 - Compute vol($S \cap H$).
- We give:
 - Asymptotic formula for balanced boxes using the Central Limit Theorem.
 - Two infinite-series formulas by generalizing [CoTi1997] (Fourier analysis).
 - Practical method using [Hosono81]'s Fast Inverse Laplace Transform.

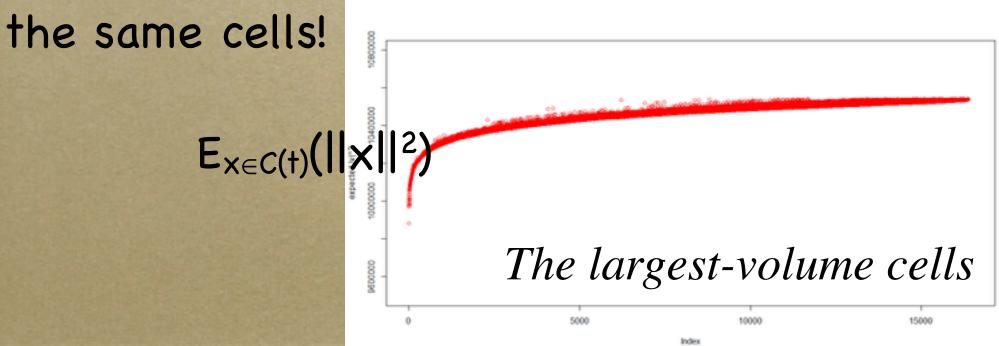
Application: [Schnorr03] vs [FK15]



Distribution of $vol(S \cap C(i))$: [FK15] cells have larger intersection volume.

C) Which Cells?

- The computation of vol(SnC(t)) is too « slow » to find the cells with largest vol(SnC(t)).
- o But it is easy to find the cells C(t) minimizing $E_{x \in C(t)}(||x||^2)$: orthogonal enumeration. Almost

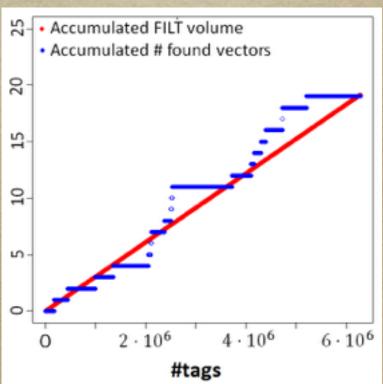


Success probability by Statistical Inference

The computation of vol(S∩C(t)) is too
 « slow » to approximate Σt∈Uvol(S∩C(t)).
 So we ``select" a few thousands cells and...
 extrapolate!

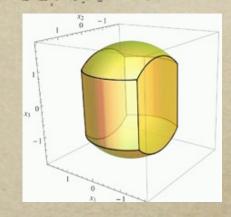
 Errors ≤ 1% in practice.

 Sound success probabilities for discrete pruning.



Discrete Pruning vs Cylinder Pruning

• Discrete pruning is faster when: o Small number of tags • High dimension o Weakly-reduced bases o Benefits • Easy to parallelize Easy generation of parameters



Optimizing the Basis

The basis should try to maximize vol(S∩C(t)), which may be the same as minimizing E_{x∈C(t)}(||x||²). This suggests to minimize Σ_j||b_j*||².

 The best bases for discrete pruning may not be the best bases for cylinder pruning.

Conclusion

Conclusion

 We unify Schnorr's algorithms [ScEu94] and [ScO3]: view random sampling as some pruned enumeration, and [GNR10]-analyze it under only the Gaussian heuristic.

• Boxes instead of cylinder intersections.

Conclusion

New tools

 Computing volumes of ball/box intersections

Approximating a sum of many volumes
 Optimal » parameters for discrete pruning

Open Problems

Asymptotically, what is the best form of pruning?

 Adapt blockwise reduction to discrete pruning

 What is the best reduction algorithm for discrete pruning?

Thank you for your attention... Any question(s)?

http://eprint.iacr.org/2017/155