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Needs: convincing security estimates for lattice-
based cryptosystems.


Sanity check: lattice challenges.
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What Happened?

The largest SVP records [KaTe,KaFu] use 
significant power (≈RSA-768) and 
a « secret » algorithm: partial description 
in [FuKa15]. 

The main tool is an improved variant of 
Schnorr’s Random Sampling [Sc03]:        
not well-understood. 



Our Results
Revisit Schnorr’s Random Sampling [Sc03] 
and variants [BuLu06,FuKa15,DZW15].


Geometric description/generalization

First sound analysis: previously, gap 
between analyses and experiments.

Optimal parameters.


Unify Random Sampling and an older 
algorithm: pruned enumeration 
[ScEu94,ScHo95,GNR10]



Background



What is a Lattice?

A lattice is a discrete subgroup of Rⁿ, or the 
set L(b1,...,bd) of all linear combinations ∑xibi 
where xi∈Z, and the bi’s are linearly 
independent.
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Hard Lattice Problems

Input: a lattice L and an n-dim ball C.

Output: decide if L∩C is non-trivial, and 
find a point when applicable.

Two settings


Approx: L∩C has many points.                
Ex: SIS and ISIS.

Unique: only one non-trivial point.           
Ex: BDD.



Enumeration

The simplest method to solve hard lattice 
problems, going back to the 70s.


Input: a lattice L and a small ball S⊆Rn s.t. 
#(L∩S) is « small ».


Output: All points in L∩S.


Drawback: running-time typically 
superexponential, much larger than #(L∩S).



Enumeration Insight

Key ideas:

Projections never increase norms: if ||v||≤R, 
then ||π(v)||≤R.

Using nice subspaces, π(lattice) is a   
lower-dim lattice.


Enumeration is a depth-first search of a 
gigantic tree, whose running time depends 
on the quality of the basis.



Speeding Up 
Enumeration 
by Pruning



Speeding Up Enumeration

Assume that we do not need all L∩S:


Can we make enumeration faster if 
we only need to find one vector?



Enumeration with Pruning 
[ScEu94,ScHo95,GNR10]

Input: a lattice L, a ball S⊆Rn and a 
pruning set P⊆Rn.


Output: All points in L∩S∩P=(L∩P)∩S.


Pros: Enumerating L∩S∩P can be much 
faster than L∩S.


Cons: Maybe L∩S∩P ⊆ {0}.



Analyzing Pruned Enumeration 
[GNR10] Framework

Enumerating L∩S∩P is deterministic, but:


The set P is randomized: it depends on a 
(random) reduced basis.

The success probability is Pr(L∩S∩P ⊈ {0}).


#(L∩S∩P) « should be » ≈vol(S∩P)/covol(L) 
(Gaussian heuristic).



Extreme Pruning [GNR10]

Repeat until success

Generate P by reducing a “random” basis.

Enumerate(L∩S∩P)


Can be much faster than enumeration, even 
if Pr(L∩S∩P ⊈ {0}) is tiny.



Two Kinds of Pruning

Cylinder Pruning ([GNR10] generalizing 
[ScEu94,ScHo95]): P is a cylinder 
intersection.


Discrete Pruning (today): P is a union of 
cells, in practice a union of many boxes.



Enumeration 
with Discrete 

Pruning



Insight

Previous analyses of Random Sampling 
studied the distribution of certain lattice 
points (based on encodings): tricky!

New point of view: it’s actually about 
partitioning the n-dim space.


Description

Analysis



Lattice Partitions

Any partition of Rn=∪t∈T C(t) into 
countably many cells s.t.:


cells are disjoint: C(i)∩C(j) = ∅


each cell can be « opened » : it 
contains one and only one lattice point, 
which can be found efficiently. Given a 
tag t∈T, one can compute L∩C(t). 



Intuitively

Enum(L∩C(t))                      
≃ Egg opening



Lattice Enumeration with 
Discrete Pruning

Repeat until success

Select P=∪t∈U C(t) for some finite U⊆T.


Enumerate(L∩S∩P) by enumerating                        
all C(t)∩L where t∈U.


Each iteration takes #U poly-time operations 
and succeeds with Pr(L∩S∩P⊈{0}).


We need to calculate vol(S∩P)=∑t∈Uvol(S∩C(t)).


Time(Enum(L∩P)) « linear » in #(L∩P).



Issues

Which lattice partition?

How to compute vol(S∩C(t))?                          
To deduce vol(S∩P)=∑t∈U vol(S∩C(t))


How to select the set U of tags?          
We’d like the ones maximizing 
vol(S∩C(t)): different from [Sc03,FK15].



A) Which Lattice Partitions?

Lattice partitions from fundamental domains: 
T=Zn.

Lattice partitions using boxes


Babai’s partition, implicit in [DZW15]: T=Zn.


The natural partition, implicit in [FK15]: T=Nn.



Trivial Lattice Partitions

T=Zn. Cell opening: matrix/vector product.



Box Partitions in Dimension 1

Babai’s partition: T=Z


The natural partition: T=N

0 1 2-1-2

-2 -1 0 1 2

0 112 2 33 44



We can generalize with projections.


Let b1,…,bn∈Rm.


Its Gram-Schmidt Orthogonalization 
is  b*1,…,b*n ∈Rm:


b*1 = b1


b*i = component of bi orthogonal to 
b1,…,bi-1.

Dimension n



Babai’s partition

T=Zn and C(t) = tB*+ {Σi xib*i s.t. -1/2≤xi<1/2}.


Cell opening: Babai’s algorithm [Ba86].



Babai’s partition



The « Natural » Partition

T=Nn and C((t1,…,tn)) is                               
{Σixib*i s.t. -(tj+1)/2<xj≤-tj/2 or tj/2<xj≤(tj+1)/2}


Cell opening: variant of Babai’s algorithm.



B) Intersection Volumes

To estimate the success probability, we 
need to approximate vol(S∩C(t)) for many 
t’s where:


S is a ball

C(t) is a box, or a union of symmetric 
boxes.



Ball-Box Intersections

Let S=unit-ball and H=∏i [αi,βi] be a box. 
Compute vol(S∩H).

We give:


Asymptotic formula for balanced boxes using the 
Central Limit Theorem.


Two infinite-series formulas by generalizing [CoTi1997] 
(Fourier analysis).


Practical method using [Hosono81]’s Fast Inverse  
Laplace Transform.



Application: [Schnorr03] vs [FK15]

Distribution of vol(S∩C(i)):                      
[FK15] cells have larger intersection volume.



C) Which Cells?
The computation of vol(S∩C(t)) is too « slow » 
to find the cells with largest vol(S∩C(t)).


But it is easy to find the cells C(t) minimizing 
Ex∈C(t)(||x||2): orthogonal enumeration. Almost 
the same cells!

The largest-volume cells

            Ex∈C(t)(||x||2)



Success probability
by Statistical Inference 

The computation of vol(S∩C(t)) is too 
« slow » to approximate ∑t∈Uvol(S∩C(t)).


So we ``select’’ a few thousands cells and… 
extrapolate!


Errors ≤ 1% in practice.

Sound success probabilities                   
for discrete pruning.



Discrete Pruning vs Cylinder Pruning

Discrete pruning is faster when:

Small number of tags

High dimension

Weakly-reduced bases


Benefits

Easy to parallelize

Easy generation of parameters



Optimizing the Basis

The basis should try to maximize 
vol(S∩C(t)), which may be the same as 
minimizing Ex∈C(t)(||x||2). This suggests to 
minimize ∑j||bj*||2.

The best bases for discrete pruning may 
not be the best bases for cylinder pruning.



Conclusion



Conclusion

We unify Schnorr’s algorithms [ScEu94] 
and [Sc03]: view random sampling as 
some pruned enumeration, and             
[GNR10]-analyze it under only the 
Gaussian heuristic.


Boxes instead of cylinder intersections.



Conclusion

New tools

Computing volumes of ball/box 
intersections

Approximating a sum of many volumes

« Optimal » parameters for discrete 
pruning



Open Problems

Asymptotically, what is the best form 
of pruning?

Adapt blockwise reduction to discrete 
pruning

What is the best reduction algorithm 
for discrete pruning?



Thank you for your attention... 
Any question(s)?

http://eprint.iacr.org/2017/155


