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 Encryption & Authentication

Well-known disadvantage: key cannot be re-used 

Reason: 
Eve can learn info on key by observing cipher
Even worse: such attack remains undetected

Thus, key has to be refreshed even if not under attack
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any eavesdropping attack will disturb it

 General Idea

We may hope for: 
Encode ciphertext (or tag) c into a quantum state |cñ〉 
Check upon arrival if |cñ〉 is still in “good form”
Conclude: no eavesdropping took place

Would allow for: 
unbounded safe re-use of the key 
as long as not under attack
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General idea goes back to

 Known Results - and our Results

[Bennett, Brassard & Breidbart 1982]:
proposed a simple scheme
gave hand-wavy arguments for its security

Their paper got rejected, and idea was abandoned - until... 

[Damgård, Pedersen, Salvail 2005]:
proposed a new scheme with rigorous security proof
But: honest users need quantum computing capabilities

Our result: 
new simple scheme, based on BB84 qubits
rigorous security proof

Related line of work: 
encryption/authentication of quantum messages

Some also offer key recycling and/or other features 
(see e.g. Portmann’s talk) 

But, in all of those: honest users need quantum computer 
(even when restricting to classical messages)
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Encryption with key recycling: 
non-interactive (up to the ``feedback”)
only a 1-bit message is to be authenticated, offline
potential for better efficiency

Allow for almost the same 
There are subtle differences

 Encryption with Key-Recycling vs QKD

Our main motivation: intellectual interest

QKD: 
adaptively adjust to the noise



Introduction

The basic scheme and its analysis

Extensions and open problem(s)

 Road Map
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x ¬← {0,1}n H 
qθ

 |xñ〉 recover x
check t 

If Bob accepts then key (qθ, k) can be safely re-used

, t = MACk(m||x)

If Bob rejects then qθ (only) must be refreshed 

 = A[  ] + bx
m

Intuition: 

If Eve gets to see authentication tags 
ti = MACk(mi) = Ami + b

for known messages m1,m2,... and a fixed key k = (A,b), 
and so accumulates (linear) info on k and can solve for it. 

But here: authenticated message m||x is partly unknown, 
since H 

qθ
 |xñ〉 hides x (to some extent) when qθ is unknown.  

The scheme 
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If Bob accepts: qθ1 is likely to be 0 (⇒ Eve learned info on qθ) 

No need to worry: 
The more info she tries to learn the more likely she fails
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Proving dδ(k, unif |qθʹ′, Eʹ′) »≈ 0 is more involved. Builds up on 
techniques from [Tomamichel,Fehr,Kaniewski,Wehner ‘13].
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Idea: extract randomness from x  for one-time-pad key  
Can mix-and-match with authentication

 Extensions

Tolerate noise in the quantum communication
Straightforward error-correction does not work
Error-correction “without leaking partial info” 
by Dodis and Smith comes to the rescue
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We still expect this to be small, but cannot prove it 
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Open problems / future directions: 
To do the error correction in a better way
(Dodis-Smith technique works only for small error)
Minimize amount of quantum communication

What we did:
Considered one of the very first ideas for quantum crypto
(suggested >30 ago, even before QKD)
First provably-secure solution w/o quantum computer

 Conclusion 

Thank you! 


