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Zero-Knowledge Proofs

Relation f(s)=t, and want to prove knowledge of s

e.g. discrete log: Prove knowledge of s s.t. gs=t

For lattice problems such as SIS and LWE, 

want to prove knowledge of a short vector s 

such that f(s)=t



Examples

SIS Problem:

fA(s) := As mod q

4

7

2

1

11

7

9

3

6

1

12

14

8

2

5

9

10

13

1

7

7

0

2

1

6

3

5

11

14

0

9

1

0

1

1

0

1

0

0

1

8

12

14

5

= mod 17



Examples

LWE Problem:

fA(s) := As mod q
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Polynomial Rings

R = Zq[x]/(xd+1) is a polynomial ring with
• Addition mod q
• Polynomial multiplication mod q and xd+1

SIS Problem over R:

fA(s) := As mod q
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Constructing Zero-Knowledge 
Proofs

• For discrete log relations – a simple sigma protocol 
(i.e. Schnorr proof).  
• Can be made non-interactive via the Fiat-Shamir 

transformation

• For lattice schemes – the main obstacle is that the 
secret has small length.
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“Fiat-Shamir with Aborts” [Lyu ‘09]

Relation: f(s)=t

y  D
w=f(y)

z=sc+y
(Rejection 
Sample)

||z|| is small and
f(z)=tc+w

w

c

z

||z’|| is small and
f(z’)=tc’+w

c’

z’

f(z-z’)=t(c-c’)

In a non-interactive 
protocols, replaced with 
c=H(w,t)  
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Implications of the Extraction

f(z-z’)=t(c-c’)

f((z-z’)/(c-c’))=t

if (c-c’)-1 exists

But (z-z’)/(c-c’) does not necessarily have small coefficients!

Unless … c,c’ in {0,1} …

But then soundness is only 1/2.
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(Stern-type Lattice ZK Proofs)

• Combinatorial based on the code-based Stern 
identification scheme with 0/1 secrets [Ste ‘93]

• Can be adapted to larger secrets at a significant 
efficiency loss [LNSW ‘13]

• Proofs are almost always >> 1 MB (depending on 
how big the coefficients of s are)

• Not considered relevant for practical applications
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Main Open Problems

f(ŝ) = tĉ

Digital signatures [Lyu ‘09,…], 
ZK proofs of commitments 
[BKLP ‘16], (maybe others)

f(ŝ)=t when simultaneously 
proving many (>> 10,000) 
relations [Lyu ’ 09] + [BDLN ’16] 
+ [CDXY ’17]

More applications

Decrease the number of 
required samples
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ZK Proof of Plaintext Knowledge

Mediating Authority 

Sender Receiver

c:=Encpk(w)
π:=ZKPoK(c encrypts w)

Have some secret w

If the Sender 
misbehaves, the 

Authority will 
reveal w

Publishes pk to some 
encryption scheme



Ring-LWE Encryption Scheme
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Public Key: a, as+e=t
Encryption(m):  u=p(ar+e1) , v=p(tr+e2)+m

Decryption: v-us mod q mod p
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uĉ

vĉ=

Implication:  (v - us) ĉ mod q mod p = ŵ

But decryptor does not know ĉ

If he decrypts (u,v), he may get garbage because (u,v) is not a 
valid ciphertext
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1. Guess ĉ

2. ŵ:=Decrypt 

3. Output ŵ/ĉ mod p

uĉ

vĉ

There could be 
|challenge space|2

possibilities

How can we be sure we 
guessed the right ĉ?

Is this unique?  
(Decryption should be 
unique)

We modify the parameters and the decryption algorithm of the 
Ring-LWE scheme

In the decryption algorithm, check that ||(v - us) ĉ mod q||∞ < q/2C 
where C=max ||ĉ||1

For any two ĉ, ĉ’ that satisfy the above condition ŵ/ĉ = ŵ’/ĉ’ mod p
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1. Guess ĉ
There could be 
|challenge space| 
possibilities

Theorem:

If a prover is allowed Q queries to the random oracle 
(where the RO uses coins H), and T is the number of times 
the decryptor (using coins D) needs to guess ĉ, then:

PrH,D[T > kQ] < 1/k + negligible 



Implications



Implications

Expected decryption time depends on the number of 
RO queries the adversary makes



Implications

Expected decryption time depends on the number of 
RO queries the adversary makes

This could be problematic if the adversary is much 
more powerful than the decryptor



Implications

Expected decryption time depends on the number of 
RO queries the adversary makes

This could be problematic if the adversary is much 
more powerful than the decryptor

In many scenarios, the power of the adversary can be 
mitigated
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Limiting the Number of RO 
Queries by the Adversary

1. Make the RO purposefully very slow
• Honest prover needs 1 RO query

• Verification only needs 1 RO query

• Decryption needs 0 RO queries

• The only entity needing more than 1 is the adversary

2. Have an interactive protocol or use public randomness beacons
• The verifier should send random “salt” to the prover (or the prover should be 

required to use the public randomness at the time he submits the proof)

• This restricts pre-computation by the adversary

• The decryptor is usually off-line, so has more time

3. Impose large fines for cheating
• The fact that cheating occurred is immediately detected

• If revealing the cheater’s identity requires decryption, the cheater takes the 
risk that decryption will succeed 
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Other Results

Can make the challenge space smaller

• This puts a bound on the maximum number of 
guesses the decryptor needs to make

• … But increases the proof size

Easy to adapt this to CCA-secure schemes 

• Use Naor-Yung approach

• We already have one encryption and a proof, so 
just add a second encryption
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Open Problem

Is this tight?

PrH,D[T > kQ] < 1/k + negligible 

Our proof is “black-box”.  That is, we only use the 
fact that there is a zero-knowledge proof.

A non-black-box approach may look at the algebraic 
properties of R and figure out how the adversary 
may cheat.  Perhaps in some R, it is harder to cheat.  



Thanks.


