
One-Shot Verifiable
Encryption from Lattices

Vadim Lyubashevsky and Gregory Neven

IBM Research -- Zurich

Zero-Knowledge Proofs

Zero-Knowledge Proofs

Relation f(s)=t, and want to prove knowledge of s

Zero-Knowledge Proofs

Relation f(s)=t, and want to prove knowledge of s

e.g. discrete log: Prove knowledge of s s.t. gs=t

Zero-Knowledge Proofs

Relation f(s)=t, and want to prove knowledge of s

e.g. discrete log: Prove knowledge of s s.t. gs=t

For lattice problems such as SIS and LWE,

want to prove knowledge of a short vector s

such that f(s)=t

Examples

SIS Problem:

fA(s) := As mod q

4

7

2

1

11

7

9

3

6

1

12

14

8

2

5

9

10

13

1

7

7

0

2

1

6

3

5

11

14

0

9

1

0

1

1

0

1

0

0

1

8

12

14

5

= mod 17

Examples

LWE Problem:

fA(s) := As mod q

4

7

2

1

11

7

9

3

6

1

12

14

8

2

5

9

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

0

1

1

0

1

0

0

1

12

10

8

10

= mod 17

Polynomial Rings

R = Zq[x]/(xd+1) is a polynomial ring with
• Addition mod q
• Polynomial multiplication mod q and xd+1

Polynomial Rings

R = Zq[x]/(xd+1) is a polynomial ring with
• Addition mod q
• Polynomial multiplication mod q and xd+1

SIS Problem over R:

fA(s) := As mod q

a1

a6

a2

a7

a3

a8

a4

a9

a5

a10

s5

s1

s2

s3

s4

y1

y2
=

Constructing Zero-Knowledge
Proofs

• For discrete log relations – a simple sigma protocol
(i.e. Schnorr proof).
• Can be made non-interactive via the Fiat-Shamir

transformation

• For lattice schemes – the main obstacle is that the
secret has small length.

“Fiat-Shamir with Aborts” [Lyu ‘09]

“Fiat-Shamir with Aborts” [Lyu ‘09]

Relation: f(s)=t

“Fiat-Shamir with Aborts” [Lyu ‘09]

Relation: f(s)=t

y D
w=f(y)

“Fiat-Shamir with Aborts” [Lyu ‘09]

Relation: f(s)=t

y D
w=f(y) w

“Fiat-Shamir with Aborts” [Lyu ‘09]

Relation: f(s)=t

y D
w=f(y) w

c

“Fiat-Shamir with Aborts” [Lyu ‘09]

Relation: f(s)=t

y D
w=f(y)

z=sc+y
(Rejection
Sample)

w

c

z

“Fiat-Shamir with Aborts” [Lyu ‘09]

Relation: f(s)=t

y D
w=f(y)

z=sc+y
(Rejection
Sample)

||z|| is small and
f(z)=tc+w

w

c

z

“Fiat-Shamir with Aborts” [Lyu ‘09]

Relation: f(s)=t

y D
w=f(y)

z=sc+y
(Rejection
Sample)

||z|| is small and
f(z)=tc+w

w

c

z

||z’|| is small and
f(z’)=tc’+w

c’

z’

“Fiat-Shamir with Aborts” [Lyu ‘09]

Relation: f(s)=t

y D
w=f(y)

z=sc+y
(Rejection
Sample)

||z|| is small and
f(z)=tc+w

w

c

z

||z’|| is small and
f(z’)=tc’+w

c’

z’

f(z-z’)=t(c-c’)

“Fiat-Shamir with Aborts” [Lyu ‘09]

Relation: f(s)=t

y D
w=f(y)

z=sc+y
(Rejection
Sample)

||z|| is small and
f(z)=tc+w

w

c

z

||z’|| is small and
f(z’)=tc’+w

c’

z’

f(z-z’)=t(c-c’)

In a non-interactive
protocols, replaced with
c=H(w,t)

Implications of the Extraction

Implications of the Extraction

f(z-z’)=t(c-c’)

f((z-z’)/(c-c’))=t

if (c-c’)-1 exists

Implications of the Extraction

f(z-z’)=t(c-c’)

f((z-z’)/(c-c’))=t

if (c-c’)-1 exists

But (z-z’)/(c-c’) does not necessarily have small coefficients!

Unless … c,c’ in {0,1} …

But then soundness is only 1/2.

Practical (< 20KB per proof)
Applications

Practical (< 20KB per proof)
Applications

f(ŝ) = tĉ

Practical (< 20KB per proof)
Applications

f(ŝ) = tĉ

Digital signatures [Lyu ‘09,…],
ZK proofs of commitments
[BKLP ‘16], (maybe others)

Practical (< 20KB per proof)
Applications

f(ŝ) = tĉ

Digital signatures [Lyu ‘09,…],
ZK proofs of commitments
[BKLP ‘16], (maybe others)

f(ŝ)=t when simultaneously
proving many (>> 10,000)
relations [Lyu ’ 09] + [BDLN ’16]
+ [CDXY ’17]

(Stern-type Lattice ZK Proofs)

• Combinatorial based on the code-based Stern
identification scheme with 0/1 secrets [Ste ‘93]

• Can be adapted to larger secrets at a significant
efficiency loss [LNSW ‘13]

(Stern-type Lattice ZK Proofs)

• Combinatorial based on the code-based Stern
identification scheme with 0/1 secrets [Ste ‘93]

• Can be adapted to larger secrets at a significant
efficiency loss [LNSW ‘13]

• Proofs are almost always >> 1 MB (depending on
how big the coefficients of s are)

• Not considered relevant for practical applications

Main Open Problems

f(ŝ) = tĉ

Digital signatures [Lyu ‘09,…],
ZK proofs of commitments
[BKLP ‘16], (maybe others)

f(ŝ)=t when simultaneously
proving many (>> 10,000)
relations [Lyu ’ 09] + [BDLN ’16]
+ [CDXY ’17]

Main Open Problems

f(ŝ) = tĉ

Digital signatures [Lyu ‘09,…],
ZK proofs of commitments
[BKLP ‘16], (maybe others)

f(ŝ)=t when simultaneously
proving many (>> 10,000)
relations [Lyu ’ 09] + [BDLN ’16]
+ [CDXY ’17]

More applications

Main Open Problems

f(ŝ) = tĉ

Digital signatures [Lyu ‘09,…],
ZK proofs of commitments
[BKLP ‘16], (maybe others)

f(ŝ)=t when simultaneously
proving many (>> 10,000)
relations [Lyu ’ 09] + [BDLN ’16]
+ [CDXY ’17]

More applications

Decrease the number of
required samples

ZK Proof of Plaintext Knowledge
and Verifiable Encryption

ZK Proof of Plaintext Knowledge
and Verifiable Encryption

Mediating Authority

Sender Receiver

ZK Proof of Plaintext Knowledge
and Verifiable Encryption

Mediating Authority

Sender Receiver

Have some secret
witness w that x is

in language L

Publishes pk to some
encryption scheme

ZK Proof of Plaintext Knowledge
and Verifiable Encryption

Mediating Authority

Sender Receiver

c:=Encpk(w)
π:=ZKPoK(w is a witness

and c encrypts w)

Have some secret
witness w that x is

in language L

Publishes pk to some
encryption scheme

ZK Proof of Plaintext Knowledge
and Verifiable Encryption

Mediating Authority

Sender Receiver

c:=Encpk(w)
π:=ZKPoK(w is a witness

and c encrypts w)

Have some secret
witness w that x is

in language L

If the Sender
misbehaves, the

Authority will
reveal w

Publishes pk to some
encryption scheme

ZK Proof of Plaintext Knowledge

Mediating Authority

Sender Receiver

c:=Encpk(w)
π:=ZKPoK(c encrypts w)

Have some secret w

If the Sender
misbehaves, the

Authority will
reveal w

Publishes pk to some
encryption scheme

Ring-LWE Encryption Scheme

pa

pt

p

0

0

p

0

1

r

e1

e2

w

u

v=

Public Key: a, as+e=t
Encryption(m): u=p(ar+e1) , v=p(tr+e2)+m

Decryption: v-us mod q mod p

Approximate Proofs and Proofs of
Plaintext Knowledge

pa

pt

p

0

0

p

0

1

r

e1

e2

w

u

v=

Approximate Proofs and Proofs of
Plaintext Knowledge

pa

pt

p

0

0

p

0

1

r

e1

e2

w

u

v=

pa

pt

p

0

0

p

0

1

ȓ

ê1

ê2

ŵ

uĉ

vĉ=

Problem with Approximate Proofs

pa

pt

p

0

0

p

0

1

ȓ

ê1

ê2

ŵ

uĉ

vĉ=

Implication: (v - us) ĉ mod q mod p = ŵ

Problem with Approximate Proofs

pa

pt

p

0

0

p

0

1

ȓ

ê1

ê2

ŵ

uĉ

vĉ=

Implication: (v - us) ĉ mod q mod p = ŵ

But decryptor does not know ĉ

Problem with Approximate Proofs

pa

pt

p

0

0

p

0

1

ȓ

ê1

ê2

ŵ

uĉ

vĉ=

Implication: (v - us) ĉ mod q mod p = ŵ

But decryptor does not know ĉ

If he decrypts (u,v), he may get garbage because (u,v) is not a
valid ciphertext

Our Solution Outline

1. Guess ĉ

2. ŵ:=Decrypt

3. Output ŵ/ĉ mod p

uĉ

vĉ

Our Solution Outline

1. Guess ĉ

2. ŵ:=Decrypt

3. Output ŵ/ĉ mod p

uĉ

vĉ

There could be
|challenge space|2

possibilities

Our Solution Outline

1. Guess ĉ

2. ŵ:=Decrypt

3. Output ŵ/ĉ mod p

uĉ

vĉ

There could be
|challenge space|2

possibilities

How can we be sure we
guessed the right ĉ?

Our Solution Outline

1. Guess ĉ

2. ŵ:=Decrypt

3. Output ŵ/ĉ mod p

uĉ

vĉ

There could be
|challenge space|2

possibilities

How can we be sure we
guessed the right ĉ?

Is this unique?
(Decryption should be
unique)

1. Guess ĉ

2. ŵ:=Decrypt

3. Output ŵ/ĉ mod p

uĉ

vĉ

There could be
|challenge space|2

possibilities

How can we be sure we
guessed the right ĉ?

Is this unique?
(Decryption should be
unique)

1. Guess ĉ

2. ŵ:=Decrypt

3. Output ŵ/ĉ mod p

uĉ

vĉ

There could be
|challenge space|2

possibilities

How can we be sure we
guessed the right ĉ?

Is this unique?
(Decryption should be
unique)

We modify the parameters and the decryption algorithm of the
Ring-LWE scheme

1. Guess ĉ

2. ŵ:=Decrypt

3. Output ŵ/ĉ mod p

uĉ

vĉ

There could be
|challenge space|2

possibilities

How can we be sure we
guessed the right ĉ?

Is this unique?
(Decryption should be
unique)

We modify the parameters and the decryption algorithm of the
Ring-LWE scheme

In the decryption algorithm, check that ||(v - us) ĉ mod q||∞ < q/2C
where C=max ||ĉ||1

1. Guess ĉ

2. ŵ:=Decrypt

3. Output ŵ/ĉ mod p

uĉ

vĉ

There could be
|challenge space|2

possibilities

How can we be sure we
guessed the right ĉ?

Is this unique?
(Decryption should be
unique)

We modify the parameters and the decryption algorithm of the
Ring-LWE scheme

In the decryption algorithm, check that ||(v - us) ĉ mod q||∞ < q/2C
where C=max ||ĉ||1

For any two ĉ, ĉ’ that satisfy the above condition ŵ/ĉ = ŵ’/ĉ’ mod p

1. Guess ĉ
There could be
|challenge space|2

possibilities

1. Guess ĉ
There could be
|challenge space|2

possibilities

If the ciphertext (u,v) is “valid”, then any ĉ (in particular ĉ=1)
will lead to a correct decryption

1. Guess ĉ
There could be
|challenge space|2

possibilities

If the ciphertext (u,v) is “valid”, then any ĉ (in particular ĉ=1)
will lead to a correct decryption

If the ciphertext (u,v) is “invalid”, then there is some subset of
challenges that will allow the adversarial prover to come up
with a valid proof

1. Guess ĉ
There could be
|challenge space|2

possibilities

ĉ = c - c’ where c and c’ are two “successful” challenges
The encryptor / prover already gave one valid proof
So the decryptor already knows one successful challenge

If the ciphertext (u,v) is “valid”, then any ĉ (in particular ĉ=1)
will lead to a correct decryption

If the ciphertext (u,v) is “invalid”, then there is some subset of
challenges that will allow the adversarial prover to come up
with a valid proof

1. Guess ĉ
There could be
|challenge space|2

possibilities

ĉ = c - c’ where c and c’ are two “successful” challenges
The encryptor / prover already gave one valid proof
So the decryptor already knows one successful challenge

There could be
|challenge space|2

possibilities

There could be
|challenge space|2

possibilities

If the ciphertext (u,v) is “valid”, then any ĉ (in particular ĉ=1)
will lead to a correct decryption

If the ciphertext (u,v) is “invalid”, then there is some subset of
challenges that will allow the adversarial prover to come up
with a valid proof

1. Guess ĉ
There could be
|challenge space|
possibilities

Theorem:

If a prover is allowed Q queries to the random oracle
(where the RO uses coins H), and T is the number of times
the decryptor (using coins D) needs to guess ĉ, then:

PrH,D[T > kQ] < 1/k + negligible

Implications

Implications

Expected decryption time depends on the number of
RO queries the adversary makes

Implications

Expected decryption time depends on the number of
RO queries the adversary makes

This could be problematic if the adversary is much
more powerful than the decryptor

Implications

Expected decryption time depends on the number of
RO queries the adversary makes

This could be problematic if the adversary is much
more powerful than the decryptor

In many scenarios, the power of the adversary can be
mitigated

Limiting the Number of RO
Queries by the Adversary

Limiting the Number of RO
Queries by the Adversary

1. Make the RO purposefully very slow
• Honest prover needs 1 RO query

• Verification only needs 1 RO query

• Decryption needs 0 RO queries

• The only entity needing more than 1 is the adversary

Limiting the Number of RO
Queries by the Adversary

1. Make the RO purposefully very slow
• Honest prover needs 1 RO query

• Verification only needs 1 RO query

• Decryption needs 0 RO queries

• The only entity needing more than 1 is the adversary

2. Have an interactive protocol or use public randomness beacons
• The verifier should send random “salt” to the prover (or the prover should be

required to use the public randomness at the time he submits the proof)

• This restricts pre-computation by the adversary

• The decryptor is usually off-line, so has more time

Limiting the Number of RO
Queries by the Adversary

1. Make the RO purposefully very slow
• Honest prover needs 1 RO query

• Verification only needs 1 RO query

• Decryption needs 0 RO queries

• The only entity needing more than 1 is the adversary

2. Have an interactive protocol or use public randomness beacons
• The verifier should send random “salt” to the prover (or the prover should be

required to use the public randomness at the time he submits the proof)

• This restricts pre-computation by the adversary

• The decryptor is usually off-line, so has more time

3. Impose large fines for cheating
• The fact that cheating occurred is immediately detected

• If revealing the cheater’s identity requires decryption, the cheater takes the
risk that decryption will succeed

Other Results

Can make the challenge space smaller

• This puts a bound on the maximum number of
guesses the decryptor needs to make

• … But increases the proof size

Other Results

Can make the challenge space smaller

• This puts a bound on the maximum number of
guesses the decryptor needs to make

• … But increases the proof size

Easy to adapt this to CCA-secure schemes

• Use Naor-Yung approach

• We already have one encryption and a proof, so
just add a second encryption

Open Problem

Is this tight?

PrH,D[T > kQ] < 1/k + negligible

Open Problem

Is this tight?

PrH,D[T > kQ] < 1/k + negligible

Our proof is “black-box”. That is, we only use the
fact that there is a zero-knowledge proof.

Open Problem

Is this tight?

PrH,D[T > kQ] < 1/k + negligible

Our proof is “black-box”. That is, we only use the
fact that there is a zero-knowledge proof.

A non-black-box approach may look at the algebraic
properties of R and figure out how the adversary
may cheat. Perhaps in some R, it is harder to cheat.

Thanks.

