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Paris, 1st April 1776

Marie-Sophie Germain

Germain primes q, p = 2q + 1

Example: q = [2765π] + 31380, p = [2766π] + 62762
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Two centuries later

Diffie-Hellman key exchange
Public data: prime p and generator g of F×

p
1 Alice chooses private random a and computes A = ga.
2 Bob chooses private random b and computes B = gb.
3 Alice sends A to Bob; Bob sends B to Alice.
4 Alice computes common secret S = gab as S = Ba.
5 Bob computes common secret S = gab as S = Ab.

Discrete logarithm problem (DLP)

Given a prime p, a generator g of F×
p and a target h ∈ F×

p

find an integer x (denoted by logg h) such that g x = h.

Investigate how secure this is for, say, 768-bit prime fields:

Our challenge

Solve the DLP for p = [2766π] + 62762, g = 11, h = [2766e], i.e.,
find x such that

11x ≡ h (mod p).
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Factoring

Number field sieve (NFS):

1 Polynomial selection: Find two polynomials f1, f2 ∈ Z[x ] with a
common zero m modulo N (and some conditions).
Denote by F1,F2 the corresponding homogeneous polynomials.

2 Sieving: Choose L and find sufficiently many pairs a, b ∈ Z
(relations) such that F1(a, b) and F2(a, b) factor into primes ≤ L.

3 Matrix step: Construct a matrix from these relations.
Solve this system of linear equations modulo 2.

Each solution gives rise to a congruence c2 ≡ d2 (mod N), and
gcd(c + d ,N) is a proper divisor of N with probability ≥ 1

2 .
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Discrete logarithms

Number field sieve (NFS):

1 Polynomial selection: Find two polynomials f1, f2 ∈ Z[x ] with a
common zero m modulo p (and some conditions).
Denote by F1,F2 the corresponding homogeneous polynomials.

2 Sieving: Choose L and find sufficiently many pairs a, b ∈ Z
(relations) such that F1(a, b) and F2(a, b) factor into primes ≤ L.

3 Matrix step: Construct a matrix from these relations.
Solve this system of linear equations modulo q.

The solution vector of the matrix step gives (virtual) logarithms of (some
of) the prime ideals ≤ L modulo q.
Using these logarithms g x ≡ h (mod p) can be solved via descent (later).

4 / 11



Differences between factoring and the DLP

Fundamental difference:

For each integer there is just one factoring problem, whereas for each
prime there are many DPLs.
DLP instances with the same prime p share the three main NFS steps.
Applicable to cryptosystems in which the same prime p is used by all
parties (as is often featured in some standards).

Differences between factoring-NFS and DLP-NFS:

One has more freedom in polynomial selection for DLP-NFS
(Joux-Lercier method).

The matrix step modulo q is about log2 q times more complex than
modulo 2.

There are some other, minor differences.
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Extrapolating from RSA-768 to 768-bit DLP

RSA-768 timings:

Main steps time wall clock time memory comments

Pol. selection 40 years 5 months < 10 MB low priority
Sieving 1500 years 2 years 1-2 GB very parallel
Matrix step
(193M×193M)

}
75 years 4 months 200 GB only 8 tasks

Naive extrapolation to 768-bit DLP:

Main steps time
Pol. selection 40 years
Sieving 1500 years
Matrix step 50000 years (about 767 times 75 years)
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Rebalancing

Problem: How can the effort for the matrix step be reduced?

Solution: By adapting parameters one looks for better (but rarer)
relations, which are supposed to produce a smaller matrix.

(smaller factor bases, only two large primes per polynomial)

Consequences:

The sieving time increases.

The time for the matrix step decreases (smaller matrix).

An unexpected side-effect occurred:
One can apply tricks to speed up sieving (halving the running time).

Unrelated to the above,
one can (and we did) use the Joux-Lercier polynomial selection method.
It reduces the complexity of sieving and of the matrix step.
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Timeline

Early 2015 Experiments with 512-bit and 640-bit DLPs
Polynomial selection for 768-bit DLP

May 2015 Sieving started for 768-bit DLP
August 2015 First matrix built (about 80 million, far too big)
November 2015 Feasible matrix (about 34 million)
December 2015 End of sieving, matrix size 23.5 million

Matrix step started
May 2016 Matrix step completed
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NFS computation

Computation:

It took about 1 year wall clock time (4th May 2015 - 18th May 2016).

It took about 5000 core years.

It could be reduced to 3000-4000 core years (perhaps further).

Result:

We have (virtual) logarithms for about 23.5 million prime ideals.

This leads to the logarithms for some of the small primes.
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Individual logarithms

Precomputation (not essential, but useful):

0 Extend 23.5 million logarithms to a bigger database,
for example: all logarithms for prime ideals of norm < 235.
(This took about 200 core years.)

For each target h compute logg h as follows:

1 Write the logarithm of target h as sum of
logarithms of not too big prime ideals (e.g. < 100 bits)
(average time 40 core hours, very parallel), and

2 descent prime ideals to smaller ones until all are in the database
(average time 3 core hours, some parallelism).

This can be improved in various ways (rebalancing, improving software).
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Summary

Comparison between factoring N and the DLP for p (p ≈ N):
Although solving similarly-sized matrices is about log2 p times more
complex, solving the DLP is not log2 p times harder than factoring.

After having spent a few thousand core years for each “interesting”
768-bit prime, it is relatively easy to compute discrete logarithms in
the corresponding prime fields.
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